
18.10.24 14:52

CSCI 250
Introduction to Computer Organisation

Lecture 3: CPU Architecture II

Jetic Gū

2024 Fall Semester (S3)

Overview

• Architecture: von Neumann

• Textbook: LCD: 9.7; CO: 2.1

• Core Ideas:

1. Data bus ports in LogicWorks

2. Lab 3 stuff

Changes in CSCI250
• Original Plan: more VHDL heavy implementations

• Reality:

• The intended software (Vivado, ISE) are not properly installed on the college computer.

• The old software LogicWorks, as I’ve found out, has very very limited VHDL support,
insufficient for us to design a full CPU efficiently.

• Conclusion

• We’ll have to draw a lot of circuits. I of course will make sure there’s at least one way
of designing every component within reasonable time. This will mean that the final
CPU design will be greatly simplified.

Futu
re

Data Bus Ports

P1
Bus Ports

Why no Bus Ports by Default?

• There’s no bus ports on any microchips, just individual 1bit ports for obvious
reasons.

• LogicWorks’ built-in bus ports for VHDL is very difficult to use, you are very
restricted when it comes to what can be connected.

• Fortunately, it can be resolved using custom bus ports. In CSCI250 Lab 3, you
will need 2 bus ports: D16 and D3.

Conc
ep

t

P1
Bus Ports

Implementing a D16 Port

Te
ch

nic
al

1. Go straight to File-New, select Device Symbol

P1
Bus Ports

Implementing a D16 Port

Te
ch

nic
al

2. Go to Options - Subcircuit and Part Type, select Set to primitive type, under the scroll field, select Port Connector

P1
Bus Ports

Implementing a D16 Port

Te
ch

nic
al

4. Go to Options - Add Pins, type D[0..15], press Add. You should the have a pin list like this.

P1
Bus Ports

Implementing a D16 Port

Te
ch

nic
al

5. Select pins D0-D15, change the pin function to Bidirectional

P1
Bus Ports

Implementing a D16 Port

Te
ch

nic
al

6. Draw a symbol like on the left, add a Bus pin. Double click the letter D, change the name to D16

P1
Bus Ports

Implementing a D16 Port

Te
ch

nic
al

7. Save the component as D16 in your library.

P1
Bus Ports

Implementing a D16 Port

Te
ch

nic
al

7. Now you can use it just like any other ports (you will need to name them), but it’s just like a normal D0..15 bus.

P1
Bus Ports

Lab 3 Stuff

P2
Lab 3 Stuff

Register Array

Te
ch

nic
al

P2
Lab 3 Stuff

16bit Reg

Multiplexers

Register Array

ALU

Te
ch

nic
al

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-
processing?lang=en

2. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--
immediate---add--subtract--move--and-compare?lang=en

P2
Lab 3 Stuff

• ARM Architecture has different opcodes for Logical Unit operations and
Arithmetic Unit operations

• The logical unit operations are called Data-processing instructions

• The arithmetic operations are called Shift (immediate), add, subtract, move,
and compare instructions

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en

ALU

Te
ch

nic
al

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-
processing?lang=en

2. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--
immediate---add--subtract--move--and-compare?lang=en

P2
Lab 3 Stuff

ALUOpcode
Mode

Immediate

Opcode
Mode

Immediate

Rd_data

Rn_data Rm_data

Rd_data

Rn_data Rm_data

• Some CPU architecture uses just one Arithmetic Logical Unit design. For
ARM, I find it easier to separate the AU and LU since their opcodes are
formatted quite differently

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en

ALU

Te
ch

nic
al

P2
Lab 3 Stuff

AUOpcodeB
Mode

Immediate

LU
OpcodeB

Rd_data

Rn_data Rm_data

Rd_data

Rn_data Rm_data

• OpcodeB is taking different portions of the instruction for the AU and LU 
For the AU, it is the 13-11 digits of the instruction. 
For the LU, it is the 9-6 digits of the instruction. 
We’ll discuss instruction interpretation implementation in Lecture 4

• Mode is specific to AU’s adder-subtractor 
It is the 10-9 digits of the instruction. In the ARM specification manual, it is combined with 13-11 to
makeup Opcode, but to avoid confusion here we name them separately.

• Immediate is a value that’s embedded into the instruction, you need to pad zeroes in order to use it

ALU

• Because of the restrictions found in LogicWorks’ VHDL implementation, it will
be difficult and buggy to use AU and LU designed using VHDL. However, for
Lab 3, I’ll let you decide what to do.

• Option 1: Use VHDL

• You won’t be able to easily integrate it with the rest of your register array and
memory module

• You can use when expressions to make things simple

Te
ch

nic
al

P0
XXXXXXX

P2
Lab 3 Stuff

VHDL When Expressions

Te
ch

nic
al

P0
XXXXXXX

P2
Lab 3 Stuff

 Z <= I0 after 5ns when S0 = '0' and S1 = '0' else
 I1 after 5ns when S0 = '0' and S1 = '1' else
 I2 after 5ns when S0 = '1' and S1 = '0' else
 I3 after 5ns when S0 = '1' and S1 = '1' else
 "00000000" after 5ns;

• For example, this is the code for an 8bit 4-to-1 MUX. It is fully concurrent.

VHDL When Expressions

Te
ch

nic
al

P0
XXXXXXX

P2
Lab 3 Stuff

 Z <= I0 after 5ns when S = "00" else
 I1 after 5ns when S = "01" else
 I2 after 5ns when S = "10" else
 I3 after 5ns when S = "11" else
 "00000000" after 5ns;

• You can also use when on std_logic_vector, just need to use double
quote for the values instead of single quotes.

ALU
• Because of the restrictions found in LogicWorks’ VHDL implementation, it will

be difficult and buggy to use AU and LU designed using VHDL. However, for
Lab 3, I’ll let you decide what to do.

• Option 2: Use Circuit Diagrams

• You will need to use hierarchical design and buses quite a lot to avoid
massive circuit diagrams. If you do things correctly, it’s not going to take
much more time than VHDL.

• Design a 16bit adder subtractor, start from there. Use everything you
learned in CSCI150, this will feel good.

Te
ch

nic
al

P0
XXXXXXX

P2
Lab 3 Stuff

