CSCI 250
Introduction to Computer Organisation

Lecture 3: CPU Architecture Il

Jetic Gu
2025 Winter Semester (S1)

Overview

e Architecture: von Neumann
e Textbook: LCD: 9.7; CO: 2.1
e Core ldeas:
1. Data bus ports in LogicWorks

2. Lab 3 stuff

Changes in CSCI250

e QOriginal Plan: more VHDL heavy implementations
e Reality:
e The intended software (Vivado, ISE) are not properly installed on the college computer.

e The old software LogicWorks, as I've found out, has very very limited VHDL support,
insufficient for us to design a full CPU efficiently.

e Conclusion

e We’ll have to draw a lot of circuits. | of course will make sure there’s at least one way
of designing every component within reasonable time. This will mean that the final
CPU design will be greatly simplified.

Data Bus Ports

I Why no Bus Ports by Default?

e There’s no bus ports on any microchips, just individual 1bit ports for obvious
reasons.

e | ogicWorks’ built-in bus ports for VHDL is very difficult to use, you are very
restricted when it comes to what can be connected.

e Fortunately, it can be resolved using custom bus ports. In CSCI250 Lab 3, you
will need 2 bus ports: D16 and D3.

Implementing a D16 Port

QK

Model Wizard

1. Go straight to File-New, select Device Symbol

Implementing a D16 Port

O Part Type

~Prmitive Type
(" Create a subcircuit symbol, but don't store a circuit with it yet.
(" Create a subcircuit symbol and select an open circuit to attach to it.
O Import the port list from an open circuit, but don't attach the circuit.
(" Set to Symbol Only type, never has a subcircuit.

(¢ Set to primitive tupe. Must be used with caution!

| Fort Connector v

~Subcircut Options

Locate a new subcircuit definition

~Messages | Done l

Cancel ‘

2. GotoOptions - Subcircuit and Part Type, select Set to primitive type, under the scroll field, select Port Connector

Implementina a D16 Port

Pin Number

X

Fin Type

FPin Function |

O Add Pins |_ 0

. DO
. D1
. D2
. D3
. D4
. D5
D6
_‘?l Add I Cancel DY
. D8

. D9
. D10
. D11

D[0..15]

9299
N £ W M

4. Goto Options - Add Pins,type D[0..15], press Add. You should the have a pin list like this.

Implementing a D16 Port

Pin Number I

Pin Type Bus Internal

Fin Function IBidirectional Zl

=D BE
Jo13
- [BE
 BE

5. Select pins D0-D15, change the pin function to Bidirectional

Implementing a D16 Port

O Properties
3
‘ Pin
Pin Name
| D16 W vVisible Text Font...
NOTE: Attributes can
Number only be set on a single
pin at a time,
Function v
- Attributes. .. ‘
Length |2 (qrid
QK Cancel ‘

6. Draw a symbol like on the left, add a Bus pin. Double click the letter D, change the name to D16

Implementing a D16 Port

- O Save Part As

Part name: D16

Destination Library:

7400, clf
Connectors.CLF
CSCI250.clf
Discretes.CLF
Pseudo Devices.CLF
Simulation Gates.clf
Simulation (0. clf
Simulation Logic.clf

Spice.CLF
VHDLPrims.clf

New Lib...l Upen Lib...l | Save I Cancel | |

7. Save the component as D16 in your library.

}6543
1
1=~

654 3 mmm— |]
012 3 et | (]

AR B O L=y < NIAP &
O 7 DDUTBD
S e T e T - G T M| Ow|eo-~ 0O e e 0w
o~ B < Wiife~ 0 =0 Wijey @ =X Wev @ =1 LW N @ < Wy @ = W @ =0 W|ev @ =1 W 0
—wno—oa~wuodl—uond —nooEuog-wuoe al—wuond hUu
o= mOlo=o Olo g = FHewoOlo=soOflo=son oo =
—

D16 Port

ing a

D3 1

D6 17

D101
D3 17
D8 1
D7

D151

:W D10
]
_’ﬂ DY
]
_’ﬁ D4
E
_’—ﬁ D1
e P

Implement

>

-
-
>

D11 "DJ
1 -
-
sl
H -

-
-
1

-

D10
D9
D8
D7
Bl
D5
D4 |
D3
D2
D1
PO

P1

Bus Ports
7. Now you can use it just like any other ports (you will need to name them), but it’s just like a normal DO.

Lab 3 Stuff

Register Array

0 g
4567 :
80AB
CDEF %\
R
45
50 AB —)g\
CDEF - A
frizs3 B Rd Data !
4567 a_bate 6
80AB 2\._ |
R D! |
4567 % Y (1000
80AB : |
CDEF l
[1
—| 7 i
D I) :
— EN Q opdo} ¢
6 DEW1 ’ C
Q70 ‘
—_— Rd g —L—EN @B L —
5 . as—0— | 0600D
0712 3
— — 45@7Hl—s2 Q3—0— } +—EN Q 0600 ®
D |1 -4 89ABIL——s1 02— Ch
CDEFHU——S0 Q1—0-
Y =3 Qo |—“
— Y - 3 L EN Q oodqo} ®
e | B N Q J— —t !
' IO — 2 Reset ,
a 1-_ P—D
" of—EN a 000 p4+o ;
— 1 972 3—0 c
4 57:%% o I6
E9AB
I CDEFl—£~ I p 15
— 0 Rm6 oD u vLokor
T2 30 EN Q 000 0f4—+o 13
16bit Re RN Ca 0 2
g CDE F—P'rl | ® I <|;_
{110 —D ® 0
0 EN Q 0000
Cuo
;‘1’
- [D
Multiplexers EN ol— oo
1*0—(: o
|EN—
D
0 EN Qe 1 00 0
C
|

Register Array

P2
Lab 3 Stuff

e ARM Architecture has different opcodes for Logical Unit operations and
Arithmetic Unit operations

e The logical unit operations are called Data-processing instructions

e The arithmetic operations are called Shift (immediate), add, subtract, move,
and compare instructions

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-e
processing?lang=en

2. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instructi
iImmediate---add--subtract--move--and-compare?lang=en

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en

P2
Lab 3 Stuff

Rd_data

Opcode ALU
Mode
Immediate /\

Rn_data Rm_data

e Some CPU architecture uses just one Arithmetic Logical Unit design. For
ARM, | find it easier to separate the AU and LU since their opcodes are
formatted quite differently

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-e
processing?lang=en

2. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instructi
iImmediate---add--subtract--move--and-compare?lang=en

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Data-processing?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding/Shift--immediate---add--subtract--move--and-compare?lang=en

P2
Lab 3 Stuff

Rd_data Rd _data
LU OpcodeB AU
OpcodeB Mode
/\ Immediate /\
Rn_data Rm_data Rn_data Rm_data

e OpcodeB is taking different portions of the instruction for the AU and LU

For the AU, it is the 13-11 digits of the instruction.
For the LU, it is the 9-6 digits of the instruction.
We’ll discuss instruction interpretation implementation in Lecture 4

e Mode Is specific to AU’s adder-subtractor

It is the 10-9 digits of the instruction. In the ARM specification manual, it is combined with 13-11 to
makeup Opcode, but to avoid confusion here we name them separately.

e ITmmediate is a value that’s embedded into the instruction, you need to pad zeroes in order to use it

P2
Lab 3 Stuff

e Because of the restrictions found in LogicWorks’ VHDL implementation, it will
be difficult and buggy to use AU and LU designed using VHDL

e For Lab 3, please use Circuit Diagrams

e You will need to use hierarchical design and buses quite a lot to avoid
massive circuit diagrams. If you do things correctly, it’s not going to take
much more time than VHDL.

e Design a 16bit adder subtractor, start from there. Use everything you
learned in CSCI150, this will feel good.

