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Overview
• Architecture: von Neumann


• Textbook: LCD: 9.7; CO: 2.1


• Core Ideas:


1. ARM Registers


2. Memory Operations


3. Lab 3 Part 1: Register Array Implementation



ARM Registers
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ARM system registers
• In a normal 32bit ARM CPU, we have 16+1 registers that users can directly 

access


• R0 - R6: GPR; R8-R10: GPR;


• R7: Holds system call number


• R11 aka FP: Frame Pointer 

• R12-R15 and CPSR: special purpose registers


• R12: for temporary values, not important to us
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R7: System Call Number Reg

• What are system calls?


• System calls are a security feature


• System calls separates user-space instructions and privileged 
instructions


• E.g. changing the system time is a privileged instruction, it requires a 
system call to perform
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R7: System Call Number Reg
• What other instructions are protected (privileged)?


• I/O instructions


• Context switching


• Clear/Allocate memory


• Accessing OS managed resources (filesystems etc.)


• Basically, anything that can cause your system to crash/freeze, or 
compromise security

Conc
ep

t

P1 
ARM Register



R7: System Call Number Reg
• Protected instructions cannot be programmed by a normal user, instead, relative functionalities are 

provided by the Operating System as System Call functions (Linux system calls1)


• Switching modes:


• Normally, your programme (like a C user programme) will run in user-mode, all instructions you 
write are executable in user-mode


• When you need to e.g. access files in the hard drive, you use a system call function to do so.


• The OS switches to privileged mode (kernel mode)


• The OS accesses the file for your programme, saves the data at memory addresses that your 
programme can access, then exits the kernel mode


• Your programme resumes 
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1. https://man7.org/linux/man-pages/man2/syscalls.2.html
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https://man7.org/linux/man-pages/man2/syscalls.2.html


R7: System Call Number Reg

• Does switching modes compromise performance?


• A little. Common system call codes can always be stored in the main 
memory, some very common ones can even be cached. This is managed by 
the OS


• Are system calls common?


• Extremely. But it also depends on your choice of programming language and 
compiler. E.g., a simple Hello World could use more than 50 system 
calls1
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1. You can use strace in Linux to check every system call a programme uses
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R7: System Call Number Reg

• So what does R7 do?


• As seen in the Linux example, system calls are numbered


• R7 helps keep track of which system call is currently being executed


• This helps the OS determine when and how to get in and out of kernel mode
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R7: System Call Number Reg

• So what does R7 do?


• As seen in the Linux example, system calls are numbered


• R7 helps keep track of which system call is currently being executed


• This helps the OS determine when and how to get in and out of kernel mode 

• You will learn a bit more in an OS course. We don’t have to look too hard into 
these
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R11: Frame Pointer & 
R13: Stack Pointer

• In short, frames are whole blocks of memory


• By dividing memory regions into blocks, this make it easier to manage access 
restrictions, control dynamic memory allocation for the operating system


• SP points to the next memory block that is free, allowing for rapid memory 
allocation


• FP points to the current memory block being used, allowing for rapid memory 
access


• You will learn a bit more in an OS course. We don’t have to look too hard into 
these
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R14: Link register

• A register that holds the address to a subroutine’s return


• When you call a function, a subroutine is created. R14 is used to store the 
return value’s address. Yes, going in and out of a subroutine is also managed 
by the OS
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R15: Programme Counter

• This is very very important


• A programme counter is where the address of instructions we are executing 
gets stored


• Specific to ARM, it stores the address of the Next instruction to be executed 
(Think: why is it not the current one?)


• After every CPU cycle, instruction from PC is retrieved, so at the next cycle, 
we can start execution directly
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Our 16bit ARM thumb CPU

• For simplicity, we’ll do things a bit differently from 32bit ARM CPU


• We need only 8 registers, with R7 being PC


• R0-R6 are just normal GPR, no need for specific functionalities


• We also need an Instruction Register, this is outside of the Register Array (not 
user accessible). We’ll discuss this in a future lecture
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Memory Operations
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Memory Instruct.



There are 3 Types of Memory 
Operations in ARM 16bit thumb

• Single Data Item Load/Store


• A memory address is stored in a register


• Load based on PC address


• Retrieve from an address relative to Programme Counter


• Multiple Register Load/Store


• For our example, let’s assume register number 7 is PC (since we only have 8 
GPR in our 16bit thumb CPU)
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Single Data Item Store

• OPa: 0101, OPb: 000  
ARM instructions in this case has two parts in its opcode


• STR Rt, Rn, Rm


• Calculates an address from a base register value and an offset, stores a word 
from a register to memory.


• Base register: Rn; Source register: Rt; Offset: Rm;


• Remember, in a 16bit system, a full word is 16bit
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1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en

P2 
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en


Single Data Item Store

• OPa: 0101, OPb: 000  
ARM instructions in this case has two parts in its opcode


• STR Rt, Rn, Rm
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1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

R7 0000h *PC

R6 0000h Normal GPR

R5 0000h Normal GPR

R4 0000h Normal GPR

R3 0003h Normal GPR

R2 FF00h Normal GPR

R1 0000h Normal GPR

R0 FF07h Normal GPR

• e.g. 0101 000 011 010 000 
        OPa    OPb    Rm     Rn       Rt


• Final memory address: FF03h 
(Rn + Rm)  
Value to be stored to memory: FF07h 
(Rt)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en


Single Data Item Store

• Why offset?


• For example, in C: int a[100];


• C memory allocation is continuous, this allocates 100 words’ space in the main memory


• For byte addressable memory, thats 200 addresses (e.g. 0001h to 00C8h)


• For our case, if our main memory’s word length is 16bits, then that’s 100 addresses 
(e.g. from 0001h to 0064h, &a == 0001h)


• When you are accessing a[i], you have to store i in a register (offset), the address for a in 
another register (base), then access address a+i
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1. Our system is 16bits, recall in lab 2, the memory you implemented was not byte addressable, each word is 16bit
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt



Single Data Item Store

• An offset makes accessing memory easier, instead of having to waste another 
CPU cycle on performing offset addition


• The actual use case is far more complicated, your Operating System uses 
Pages to manage virtual memory, individual variables’ address are also 
relative to a page address, making offset even more useful

Te
ch

nic
al

P0 
XXXXXXX

P2 
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt



Single Data Item Load

• OPa: 0101, OPb: 100  
ARM instructions in this case has two parts in its opcode


• LDR Rt, Rn, Rm


• Calculates an address from a base register value and an offset, loads a word 
from a memory to register.


• Base register: Rn; Target register: Rt; Offset: Rm; 


• Notice the roles of register arguments are different from STR
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1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/LDR--register--Thumb-?
lang=en
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/LDR--register--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/LDR--register--Thumb-?lang=en


Single Data Item Store 
with Immediate

• OPa: 0110, OPb: 0  
ARM instructions don’t necessarily always have the same number of bits for 
Opcode


• STR Immediate, Rn, Rt


• Calculates an address from a base register value and an offset, stores a 
word from a register to memory. The offset is a 5bit Immediate value


• Base register: Rn; Source register: Rt; Offset: Immediate; 
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1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--
Thumb-?lang=en
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en


Single Data Item Store 
with Immediate
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1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--
Thumb-?lang=en
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

• OPa: 0110, OPb: 0  
ARM instructions don’t necessarily always have the same number of bits for Opcode


• STR Immediate, Rn, Rt
R7 0000h *PC

R6 0000h Normal GPR

R5 0000h Normal GPR

R4 0000h Normal GPR

R3 0000h Normal GPR

R2 FF00h Normal GPR

R1 0000h Normal GPR

R0 FF07h Normal GPR

• e.g. 0110   0   00100 010 000 
        OPa    OPb     Imm5       Rn       Rt


• Final memory address: FF04h 
(Rn + $(Imm5))  
Value to be stored to memory: FF07h 
(Rt)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en


• Why Immediate?


• For example, in C: int a, b;


• In this case, the memory address for a and b could be fixed, either in a 
virtual memory page or just on physical memory.


• In reality, a computer is incapable of distinguishing labels a and b, instead 
an offset relative to the data segment address of that programme is used
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1. Our system is 16bits, recall in lab 2, the memory you implemented was not byte addressable, each word is 16bit
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Single Data Item Store 
with Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt



• The Instruction Segment 
of a programme in the main memory stores the 
binary instructions of this programme. This is 
usually read-only, as programmes don’t change 
their own code on the fly


• This is often cached or queued*


• The Data Segment 
of a programme contains variables, data 
structures, etc.
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1. Depends on CPU implementation, for our ARM implementation, we don’t need to worry about this
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Instruction Segment

Data Segment

Single Data Item Store 
with Immediate

add_data_seg

add_inst_seg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt



• Example 1: you have a C programme, in the main 
function, you declared: int a=0, b=0; 

• In this case, two slots in the data segments are 
created, and allocated to a and b separately


• Their addresses 
&a == add_data_seg + 0;  
&b == add_data_seg + 1;


• You can access these variables faster using 
immediate store and load, where imm5 can be 0 or 1
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Instruction Segment

Data Segment

Single Data Item Store 
with Immediate

add_data_seg 
add_data_seg + 1 
add_data_seg + 2 
…

add_inst_seg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt



• Example 2: C++ class and C struct 

• Both C and C++ allocates a fixed amount of memory for 
each class or struct object/instance


• For example: 
struct boo { 
    int a; 
    int b; 
} q;


• q.a and q.b will have memory addresses like1 
&q and &q + 1
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1. gcc/clang has some weird techniques that may cause some differences across different versions and optimisation levels
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Instruction Segment

Data Segment

Single Data Item Store 
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add_data_seg

add_inst_seg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt



Single Data Item Load 
with Immediate

• OPa: 0110, OPb: 1  
OPb controls whether it’s load or store


• LDR Immediate, Rn, Rm


• Calculates an address from a base register value and an offset, loads a 
word from memory to register.


• Base register: Rn; Target register: Rt; Offset: Rm; 
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1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--
Thumb-?lang=en
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 Immediate Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en


Single Data Item Load/Store
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1. We do not implement these 
2. SP stands for Stack pointer, a special register that we do not use in our implementation
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opA opB Instructions

0101

000 Store register (STR)

001 - 011 Store Half-Word (32bit system), Store Byte, Signed Byte1

100 Load register (LDR)

101 - 111 Load Half-Word (32bit system), Store Byte, Signed Byte1

0110
0xx Store register (STR, Immediate)

1xx Load register (LDR, Immediate)

0111, 1000, 1001 - Store/Load Byte, Halfword1, SP2
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Implementation of a Register 
Array

• Part 1:


• Implement a 16bit Register Cell (CSCI150)


• Implement 8-to-1 16bit Multiplexers (VHDL, we’ll talk about it this Friday)


• Implementing the Register Array (Circuit diagram)


• Part 2:


• Implement an ALU (details to be discussed on Friday)


• Due end of next week, or later if necessary. Don’t worry we have time.
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