
15.10.24 17:56

CSCI 250
Introduction to Computer Organisation

Lecture 3: CPU Architecture II

Jetic Gū

2024 Fall Semester (S3)

Overview
• Architecture: von Neumann

• Textbook: LCD: 9.7; CO: 2.1

• Core Ideas:

1. ARM Registers

2. Memory Operations

3. Lab 3 Part 1: Register Array Implementation

ARM Registers

P1
ARM Register

ARM system registers
• In a normal 32bit ARM CPU, we have 16+1 registers that users can directly

access

• R0 - R6: GPR; R8-R10: GPR;

• R7: Holds system call number

• R11 aka FP: Frame Pointer

• R12-R15 and CPSR: special purpose registers

• R12: for temporary values, not important to us

Conc
ep

t

P1
ARM Register

R7: System Call Number Reg

• What are system calls?

• System calls are a security feature

• System calls separates user-space instructions and privileged
instructions

• E.g. changing the system time is a privileged instruction, it requires a
system call to perform

Conc
ep

t

P1
ARM Register

R7: System Call Number Reg
• What other instructions are protected (privileged)?

• I/O instructions

• Context switching

• Clear/Allocate memory

• Accessing OS managed resources (filesystems etc.)

• Basically, anything that can cause your system to crash/freeze, or
compromise security

Conc
ep

t

P1
ARM Register

R7: System Call Number Reg
• Protected instructions cannot be programmed by a normal user, instead, relative functionalities are

provided by the Operating System as System Call functions (Linux system calls1)

• Switching modes:

• Normally, your programme (like a C user programme) will run in user-mode, all instructions you
write are executable in user-mode

• When you need to e.g. access files in the hard drive, you use a system call function to do so.

• The OS switches to privileged mode (kernel mode)

• The OS accesses the file for your programme, saves the data at memory addresses that your
programme can access, then exits the kernel mode

• Your programme resumes

Te
ch

nic
al

P0
XXXXXXX

1. https://man7.org/linux/man-pages/man2/syscalls.2.html

P1
ARM Register

https://man7.org/linux/man-pages/man2/syscalls.2.html

R7: System Call Number Reg

• Does switching modes compromise performance?

• A little. Common system call codes can always be stored in the main
memory, some very common ones can even be cached. This is managed by
the OS

• Are system calls common?

• Extremely. But it also depends on your choice of programming language and
compiler. E.g., a simple Hello World could use more than 50 system
calls1

Te
ch

nic
al

P0
XXXXXXX

1. You can use strace in Linux to check every system call a programme uses

P1
ARM Register

R7: System Call Number Reg

• So what does R7 do?

• As seen in the Linux example, system calls are numbered

• R7 helps keep track of which system call is currently being executed

• This helps the OS determine when and how to get in and out of kernel mode

Te
ch

nic
al

P0
XXXXXXX

P1
ARM Register

R7: System Call Number Reg

• So what does R7 do?

• As seen in the Linux example, system calls are numbered

• R7 helps keep track of which system call is currently being executed

• This helps the OS determine when and how to get in and out of kernel mode

• You will learn a bit more in an OS course. We don’t have to look too hard into
these

Te
ch

nic
al

P0
XXXXXXX

P1
ARM Register

R11: Frame Pointer &
R13: Stack Pointer

• In short, frames are whole blocks of memory

• By dividing memory regions into blocks, this make it easier to manage access
restrictions, control dynamic memory allocation for the operating system

• SP points to the next memory block that is free, allowing for rapid memory
allocation

• FP points to the current memory block being used, allowing for rapid memory
access

• You will learn a bit more in an OS course. We don’t have to look too hard into
these

Te
ch

nic
al

P0
XXXXXXX

P1
ARM Register

R14: Link register

• A register that holds the address to a subroutine’s return

• When you call a function, a subroutine is created. R14 is used to store the
return value’s address. Yes, going in and out of a subroutine is also managed
by the OS

Te
ch

nic
al

P0
XXXXXXX

P1
ARM Register

R15: Programme Counter

• This is very very important

• A programme counter is where the address of instructions we are executing
gets stored

• Specific to ARM, it stores the address of the Next instruction to be executed
(Think: why is it not the current one?)

• After every CPU cycle, instruction from PC is retrieved, so at the next cycle,
we can start execution directly

Te
ch

nic
al

P0
XXXXXXX

P1
ARM Register

Our 16bit ARM thumb CPU

• For simplicity, we’ll do things a bit differently from 32bit ARM CPU

• We need only 8 registers, with R7 being PC

• R0-R6 are just normal GPR, no need for specific functionalities

• We also need an Instruction Register, this is outside of the Register Array (not
user accessible). We’ll discuss this in a future lecture

Te
ch

nic
al

P0
XXXXXXX

P1
ARM Register

Memory Operations

P2
Memory Instruct.

There are 3 Types of Memory
Operations in ARM 16bit thumb

• Single Data Item Load/Store

• A memory address is stored in a register

• Load based on PC address

• Retrieve from an address relative to Programme Counter

• Multiple Register Load/Store

• For our example, let’s assume register number 7 is PC (since we only have 8
GPR in our 16bit thumb CPU)

Te
ch

nic
al

P2
Memory Instruct.

Single Data Item Store

• OPa: 0101, OPb: 000  
ARM instructions in this case has two parts in its opcode

• STR Rt, Rn, Rm

• Calculates an address from a base register value and an offset, stores a word
from a register to memory.

• Base register: Rn; Source register: Rt; Offset: Rm;

• Remember, in a 16bit system, a full word is 16bit

Te
ch

nic
al

P0
XXXXXXX

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en

Single Data Item Store

• OPa: 0101, OPb: 000  
ARM instructions in this case has two parts in its opcode

• STR Rt, Rn, Rm

Te
ch

nic
al

P0
XXXXXXX

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

R7 0000h *PC

R6 0000h Normal GPR

R5 0000h Normal GPR

R4 0000h Normal GPR

R3 0003h Normal GPR

R2 FF00h Normal GPR

R1 0000h Normal GPR

R0 FF07h Normal GPR

• e.g. 0101 000 011 010 000 
 OPa OPb Rm Rn Rt

• Final memory address: FF03h
(Rn + Rm)  
Value to be stored to memory: FF07h
(Rt)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--register-?lang=en

Single Data Item Store

• Why offset?

• For example, in C: int a[100];

• C memory allocation is continuous, this allocates 100 words’ space in the main memory

• For byte addressable memory, thats 200 addresses (e.g. 0001h to 00C8h)

• For our case, if our main memory’s word length is 16bits, then that’s 100 addresses 
(e.g. from 0001h to 0064h, &a == 0001h)

• When you are accessing a[i], you have to store i in a register (offset), the address for a in
another register (base), then access address a+i

Te
ch

nic
al

P0
XXXXXXX

1. Our system is 16bits, recall in lab 2, the memory you implemented was not byte addressable, each word is 16bit

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

Single Data Item Store

• An offset makes accessing memory easier, instead of having to waste another
CPU cycle on performing offset addition

• The actual use case is far more complicated, your Operating System uses
Pages to manage virtual memory, individual variables’ address are also
relative to a page address, making offset even more useful

Te
ch

nic
al

P0
XXXXXXX

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

Single Data Item Load

• OPa: 0101, OPb: 100  
ARM instructions in this case has two parts in its opcode

• LDR Rt, Rn, Rm

• Calculates an address from a base register value and an offset, loads a word
from a memory to register.

• Base register: Rn; Target register: Rt; Offset: Rm;

• Notice the roles of register arguments are different from STR

Te
ch

nic
al

P0
XXXXXXX

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/LDR--register--Thumb-?
lang=en

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/LDR--register--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/LDR--register--Thumb-?lang=en

Single Data Item Store
with Immediate

• OPa: 0110, OPb: 0  
ARM instructions don’t necessarily always have the same number of bits for
Opcode

• STR Immediate, Rn, Rt

• Calculates an address from a base register value and an offset, stores a
word from a register to memory. The offset is a 5bit Immediate value

• Base register: Rn; Source register: Rt; Offset: Immediate;

Te
ch

nic
al

P0
XXXXXXX

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--
Thumb-?lang=en

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en

Single Data Item Store
with Immediate

Te
ch

nic
al

P0
XXXXXXX

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--
Thumb-?lang=en

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

• OPa: 0110, OPb: 0  
ARM instructions don’t necessarily always have the same number of bits for Opcode

• STR Immediate, Rn, Rt
R7 0000h *PC

R6 0000h Normal GPR

R5 0000h Normal GPR

R4 0000h Normal GPR

R3 0000h Normal GPR

R2 FF00h Normal GPR

R1 0000h Normal GPR

R0 FF07h Normal GPR

• e.g. 0110 0 00100 010 000 
 OPa OPb Imm5 Rn Rt

• Final memory address: FF04h
(Rn + $(Imm5))  
Value to be stored to memory: FF07h
(Rt)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en

• Why Immediate?

• For example, in C: int a, b;

• In this case, the memory address for a and b could be fixed, either in a
virtual memory page or just on physical memory.

• In reality, a computer is incapable of distinguishing labels a and b, instead
an offset relative to the data segment address of that programme is used

Te
ch

nic
al

P0
XXXXXXX

1. Our system is 16bits, recall in lab 2, the memory you implemented was not byte addressable, each word is 16bit

P2
Memory Instruct.

Single Data Item Store
with Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

• The Instruction Segment 
of a programme in the main memory stores the
binary instructions of this programme. This is
usually read-only, as programmes don’t change
their own code on the fly

• This is often cached or queued*

• The Data Segment 
of a programme contains variables, data
structures, etc.

Te
ch

nic
al

P0
XXXXXXX

1. Depends on CPU implementation, for our ARM implementation, we don’t need to worry about this

P2
Memory Instruct.

Instruction Segment

Data Segment

Single Data Item Store
with Immediate

add_data_seg

add_inst_seg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

• Example 1: you have a C programme, in the main
function, you declared: int a=0, b=0;

• In this case, two slots in the data segments are
created, and allocated to a and b separately

• Their addresses 
&a == add_data_seg + 0;  
&b == add_data_seg + 1;

• You can access these variables faster using
immediate store and load, where imm5 can be 0 or 1

Te
ch

nic
al

P0
XXXXXXX

P2
Memory Instruct.

Instruction Segment

Data Segment

Single Data Item Store
with Immediate

add_data_seg
add_data_seg + 1
add_data_seg + 2
…

add_inst_seg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

• Example 2: C++ class and C struct

• Both C and C++ allocates a fixed amount of memory for
each class or struct object/instance

• For example: 
struct boo {
 int a;
 int b;
} q;

• q.a and q.b will have memory addresses like1 
&q and &q + 1

Te
ch

nic
al

P0
XXXXXXX

1. gcc/clang has some weird techniques that may cause some differences across different versions and optimisation levels

P2
Memory Instruct.

Instruction Segment

Data Segment

Single Data Item Store
with Immediate

add_data_seg

add_inst_seg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Immediate Rn Rt

Single Data Item Load
with Immediate

• OPa: 0110, OPb: 1  
OPb controls whether it’s load or store

• LDR Immediate, Rn, Rm

• Calculates an address from a base register value and an offset, loads a
word from memory to register.

• Base register: Rn; Target register: Rt; Offset: Rm;

Te
ch

nic
al

P0
XXXXXXX

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--
Thumb-?lang=en

P2
Memory Instruct.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 Immediate Rn Rt

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/STR--immediate--Thumb-?lang=en

Single Data Item Load/Store

Te
ch

nic
al

P0
XXXXXXX

1. We do not implement these
2. SP stands for Stack pointer, a special register that we do not use in our implementation

P2
Memory Instruct.

opA opB Instructions

0101

000 Store register (STR)

001 - 011 Store Half-Word (32bit system), Store Byte, Signed Byte1

100 Load register (LDR)

101 - 111 Load Half-Word (32bit system), Store Byte, Signed Byte1

0110
0xx Store register (STR, Immediate)

1xx Load register (LDR, Immediate)

0111, 1000, 1001 - Store/Load Byte, Halfword1, SP2

Lab 3

P3
Lab 3 P1

Implementation of a Register
Array

• Part 1:

• Implement a 16bit Register Cell (CSCI150)

• Implement 8-to-1 16bit Multiplexers (VHDL, we’ll talk about it this Friday)

• Implementing the Register Array (Circuit diagram)

• Part 2:

• Implement an ALU (details to be discussed on Friday)

• Due end of next week, or later if necessary. Don’t worry we have time.

Conc
ep

t

P3
Lab 3 P1

