Jetic Gū

Columbia College

- 1. Handwritten submissions and proprietary formats (e.g. Pages or MS Word) will not be graded.
- 2. Late submission and resubmission policies are stated on the course webpage.
- 3. Mathematical expressions must be written <u>entirely</u> using LaTeX, otherwise **50%-100%** of marks will be deducted.

4. Circuits must be **tested** using switches/probs against a truth table. Untested circuits will receive 0.

Submission File structure:

submission.zip
- answer.pdf
- c1-1.cct
- c1-2.cct
- c2.cct
- c3.cct
- c4.cct

The files circuit1-1, circuit1-2, circuit3 are 1pt each, circuit2 2pt, circuit3 3pt, answer.pdf 2pt.

Lab 4

5. (PDF) Datapath conceptual question: assume a datapath with a 4-bit register array (4 GPRs inside) that can perform certain functions. The datapath takes input OP_{2:0} from the control unit for function selection, rd_{1:0} and rs_{1:0} for register selection, in_{3:0} for value input.

OP _{2:0}	Register Operation
000	No change
001	Clear a single register to 0, selected by $\mathtt{rd}_{1:0}$
010	Perform register transferring, assign the value of register at address $rs_{1:0}$ to register at $rd_{1:0}$.
011	Load value from $in_{3:0}$ into a single register, selected by $rd_{1:0}$
110	Perform addition of 2 register values, selected by $rd_{1:0}$ and $rs_{1:0}$, store the output to register with address $rd_{1:0}$. (Use the adder-subtractor functional block)
111	Perform subtraction of 2 register values, selected by $rd_{1:0}$ and $rs_{1:0}$, store the output to register with address $rd_{1:0}$. (Use the adder-subtractor functional block)

Write down the sequence for all necessary inputs for computing 4 + 5 - 7. You will need to load number 4, 5, 7 into the datapath, then perform the necessary calculation, and finally store the result in register number 0. (2pt)

Hint: here's a sample for loading value 3 into register number 0, and 2 into register 1 (one line per):

$$OP_{2:0} = 011$$
, $rd_{1:0} = 00$, $in_{3:0} = 0011$
 $OP_{2:0} = 011$, $rd_{1:0} = 01$, $in_{3:0} = 0010$

- 6. Register design:
 - A. Draw the circuit diagram of a D Flip-Flop with EN, using the D flip-flop wo/SQ component in the system library. Save it as a component in your library, as well as in a circuit file (c1-1.cct).
 Requirement: your CCT file must show your component being tested using switches and probs.
 - B. Draw the circuit diagram of a 4bit Register using the above D Flip-Flop with EN, your register must have $D_3D_2D_1D_0$, *EN*, *C*, and *R* as input ports, and $Q_3Q_2Q_1Q_0$ as output (c1-2.cct). Requirement: your CCT file must show your component being tested using switches, probs, and HEX Keyboard and Display.
- 7. Register array: draw the circuit diagram of a Register array with 4 registers, that meets the following specification (c2.cct):
 - A. The register array will have one 4bit rd_in bus providing new values to be stored, 2bit rd bus specifying the register to take in new values;
 - B. one 4bit rs out bus outputting values from the register array, selected by the 2bit rs bus;
 - C. a single ${\tt Clear}$ switch that can clear all registers to 0; and
 - D. a single ${\tt CLK}$ switch simulating the clock unit.
 - E. you should use your own register in Q1, 2-to-4 decoder, 4channel 4bit multiplexer.
 Requirement: your CCT file must show your component being tested using switches, probs, and HEX Keyboard and Display.
- 8. Datapath functional block: implement a 4bit Bitwise NOT component (c3.cct).
- 9. Final assembly:
 - A. Copy your design from c2.cct, name it c4.cct.
 - B. Overall Inputs:
 - I. func in, a hex keyboard
 - II. mode, a switch for functional block mode
 - III. OP, a hex keyboard, using least significant 2bits for function selection
 - IV. rd, a hex keyboard, using least significant 2bits

- V. rs, a hex keyboard, using least significant 2bits
- VI. rt, a hex keyboard, using least significant 2bits
- VII. CLK, a switch for simulating clock
- VIII. Clear, a switch for clearing all registers
- C. You should have 4 functional blocks, selected by 2bit input bus op:
 - I. Function 0: register assignment, takes input from a HEX keyboard (func_in);
 - II. Function 1: register transferring, takes input from the register output bus (rs_out);
 - III. Function 2: Bitwise NOT, takes input from the register output bus (rs_out), outputs its bitwise complement.
 - IV. Function 3: Adder-Subtract, takes input from the register output bus (rs_out), and another register (rt_out), specified by 2bit rt bus. There should also be a mode switch input, selecting between performing addition and subtraction.
- D. The output from the functional block selected by op will be fed back into the register array on rd_in, replacing the keyboard in c2.cct.