
05.04.21 12:00CSCI 150

Introduction to Digital and Computer

System Design

Lecture 5: Registers V

Jetic Gū

Overview
• Focus: Fundamentals of Complex Digital Circuit Design

• Architecture: von Neumann

• Textbook v4: Ch7 7.6, 7.7; v5: Ch6 6.6, 6.7

• Core Ideas:

1. Register-Cell Design

2. Counter

Example Datapath Architecture

Rev
iew

P0

Review

Register Array (Reg)

REG AX
Q

D
REG BX

Q
D

REG CX
Q

D
REG DX

Q
D

……

Dec

Functional
Block A

Functional
Block B

Functional
Block C

Functional
Block D

Control Unit
(CU)

Register Cell Design

Sum
mary

P1

Register Cell

One register for AND, OR, XOR

1. Specification
• Input: -bit , -bit

• Mode: , , , only one of these can be 1. If all 0s preserve current value

• Output: -bit output back to input register ()

• If ,

• If ,

• If ,

• If ,

n A n B

MAND MOR MXOR

n A DA

MAND = 1 DA = A ⋅ B

MOR = 1 DA = A + B

MXOR = 1 DA = A ⊕ B

MAND + MOR + MXOR = 0 DA = A

Exa
mple

P1

Register Cell

2. Formulation 
3. State Assignment

Exa
mple

P1

Register Cell

Present A
State

Next A State (DA)

AND=0 
XOR=0 
OR=0

OR=1 
B=0

OR=1 
B=1

AND=1 
B=0

AND=1 
B=1

XOR=1 
B=0

XOR=1 
B=1

0 0 0 1 0 0 0 1

1 1 1 1 0 1 1 0

• For every bit [0,n − 1]

4. Flip-Flop Input Equation

5. Output Equation

Exa
mple

P1

Register Cell

DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

• For every bit [0,n − 1]

6. Optimisation

Exa
mple

P1

Register Cell

DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

= MAND ⋅ Σm(3)
+MOR ⋅ Σm(1,2,3)
+MXOR ⋅ Σm(1,2)
+MOR ⋅ MAND ⋅ MXOR ⋅ Σm(2,3)

• For every bit [0,n − 1]

6. Optimisation

Exa
mple

P1

Register Cell

= m3(MAND + MOR + MOR ⋅ MAMD ⋅ MXOR)
+m2(MOR + MXOR + MOR ⋅ MAMD ⋅ MXOR)
+m1(MOR + MXOR)

DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

= MAND ⋅ Σm(3)
+MOR ⋅ Σm(1,2,3)
+MXOR ⋅ Σm(1,2)
+MOR ⋅ MAND ⋅ MXOR ⋅ Σm(2,3)

• For every bit [0,n − 1]

6. Optimisation
• For every bit [0,n − 1]

Exa
mple

P1

Register Cell

DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

= MAND ⋅ Σm(3)
+MOR ⋅ Σm(1,2,3)
+MXOR ⋅ Σm(1,2)
+MOR ⋅ MAND ⋅ MXOR ⋅ Σm(2,3)

= m3(MAND + MOR + MXOR)
+m2(MOR + MXOR + MAND)
+m1(MOR + MXOR)

7. Technology Mapping

Exa
mple

P1

Register Cell 356 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

 Di = C1AiBi + C2AiBi + C2AiBi

 LOAD = C1 + C2

 Di,FF = LOAD # Di + LOAD # Ai

If these equations are used directly the cost of the simple approach for a 16-cell
design is about 40% higher. So by designing a custom register cell using a D !ip-!op
rather than "nding input logic for a D !ip-!op with enable, the cost can be reduced.
Further, with the decrease in the number of levels of logic, the delay may also be
reduced. !

In the preceding example, there are no lateral connections between adjacent
cells. Among the operations requiring lateral connections are shifts, arithmetic
operations, and comparisons. One approach to the design of these structures is to
combine combinational designs given in Chapter 3 with selection logic and !ip-
!ops. A generic approach for multifunctional registers using !ip-!ops with parallel
load is shown in Figure 6-8. This simple approach bypasses register-cell design but, if
directly implemented, can result in excessive logic and too many lateral connec-
tions. The alternative is to do a custom register-cell design. In such designs, a critical
factor is the de"nition of the lateral connection(s) needed. Also, different opera-
tions can be de"ned by controlling input to the least signi"cant cell of the cell

OR

EXOR

AND
Shared Logic

C1

C2

C3

Bi

AiD

CClock

Cell i

C1 C3 C2

 FIGURE 6-17
Logic Diagram—Register-Cell Design Example 6-1

M06_MANO0637_05_SE_C06.indd 356 21/01/15 9:50 AM

Register Cells

• Register Cells are specific register designed to perform certain computation

• What we just did was for AND, OR, XOR

• Register Cell for AND, OR, XOR, and NOT

• Register Cell for AND, OR, XOR, NOT, and Shifts

• etc.

Conc
ep

t

P1

Register Cell

Counter Functional
Blocks

Sum
mary

P2

Counter

Ripple Counter; Synchronous Binary Counter; 
BCD Counter

Counter
• Register Cells for counting

• Reset: set counter to 0

• Every CLK tick: add 1 to the register

1. Ripple Counter

2. Synchronous Counters

3. BCD Counter

Conc
ep

t

P2

Counter

Ripple Counter

• 1-bit Counter

• What is the behaviour of the circuit
on the right?

Conc
ep

t

P2

Counter

0 1

R0D

C
R

CLK

Reset

Ripple Counter

• 2-bit Counter

• What is the behaviour of the circuit
on the right?

Conc
ep

t

P2

Counter

R0D

C
R

CLK

Reset

R1D

C
R

C pin of R1 is turned on 
every 2 ticks

0 1 0 10 100 01 10 11

Ripple Counter

• 3-bit Counter

• What is the behaviour of the circuit
on the right?

Conc
ep

t

P2

Counter

R0D

C
R

CLK

Reset

R1D

C
R

C pin of R1 is turned on 
every 2 ticks

00 01 10 11
R2D

C
R

C pin of R2 is turned on 
every 4 ticks

000 001 010 011

100101110111

Ripple Counter

• 4-bit Counter

• What is the behaviour of the circuit
on the right?

Conc
ep

t

P2

Counter

R0D

C
R

CLK

Reset

R1D

C
R

C pin of R1 is turned on 
every 2 ticks

R2D

C
R

C pin of R2 is turned on 
every 4 ticks

R3D

C
R

C pin of R3 is turned on 
every 8 ticks

Synchronous Binary Counter

Conc
ep

t

P2

Counter

6-6 / Microoperations on a Single Register 347

dependence and unreliable operation. This is particularly true for logic that provides
feedback paths from counter outputs back to counter inputs. Also, due to the length
of time required for the ripple to !nish, large ripple counters can be slow circuits. As
a consequence, synchronous binary counters are favored in all but low-power
designs, where ripple counters have an advantage. (See Problem 6-9.)

Synchronous Binary Counters

Synchronous counters, in contrast to ripple counters, have the clock applied to the C
inputs of all "ip-"ops. Thus, the common clock pulse triggers all "ip-"ops simultane-
ously rather than one at a time, as in a ripple counter. A synchronous binary counter
that counts up by 1 can be constructed from the incrementer in Figure 3-52 and D
"ip-"ops, as shown in Figure 6-13(a). The carry output CO is added by not placing an
X value on the C4 output before the contraction of an adder to the incrementer in
Figure 3-52. Output CO is used to extend the counter to more stages.

Note that the "ip-"ops trigger on the positive-edge transition of the clock. The
polarity of the clock is not essential here, as it was for the ripple counter. The syn-
chronous counter can be designed to trigger with either the positive or the negative
clock transition.

SeRial and PaRallel counteRS We will use the synchronous counter in Figure 6-13
to demonstrate two alternative designs for binary counters. In Figure 6-13(a), a chain
of 2-input AND gates is used to provide information to each stage about the state of
the prior stages in the counter. This is analogous to the carry logic in the ripple carry
adder. A counter that uses such logic is said to have serial gating and is referred to

 TABLE 6-8
Counting Sequence of Binary Counter

Upward Counting Sequence Downward Counting Sequence

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0

M06_MANO0637_05_SE_C06.indd 347 21/01/15 9:50 AM

Synchronous Binary Counter

Conc
ep

t

P2

Counter

• Upward flips when is all 1; Downward equals inverted UpwardQi Q<i

6-6 / Microoperations on a Single Register 347

dependence and unreliable operation. This is particularly true for logic that provides
feedback paths from counter outputs back to counter inputs. Also, due to the length
of time required for the ripple to !nish, large ripple counters can be slow circuits. As
a consequence, synchronous binary counters are favored in all but low-power
designs, where ripple counters have an advantage. (See Problem 6-9.)

Synchronous Binary Counters

Synchronous counters, in contrast to ripple counters, have the clock applied to the C
inputs of all "ip-"ops. Thus, the common clock pulse triggers all "ip-"ops simultane-
ously rather than one at a time, as in a ripple counter. A synchronous binary counter
that counts up by 1 can be constructed from the incrementer in Figure 3-52 and D
"ip-"ops, as shown in Figure 6-13(a). The carry output CO is added by not placing an
X value on the C4 output before the contraction of an adder to the incrementer in
Figure 3-52. Output CO is used to extend the counter to more stages.

Note that the "ip-"ops trigger on the positive-edge transition of the clock. The
polarity of the clock is not essential here, as it was for the ripple counter. The syn-
chronous counter can be designed to trigger with either the positive or the negative
clock transition.

SeRial and PaRallel counteRS We will use the synchronous counter in Figure 6-13
to demonstrate two alternative designs for binary counters. In Figure 6-13(a), a chain
of 2-input AND gates is used to provide information to each stage about the state of
the prior stages in the counter. This is analogous to the carry logic in the ripple carry
adder. A counter that uses such logic is said to have serial gating and is referred to

 TABLE 6-8
Counting Sequence of Binary Counter

Upward Counting Sequence Downward Counting Sequence

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0

M06_MANO0637_05_SE_C06.indd 347 21/01/15 9:50 AM

? ?

Synchronous Binary Counter

• Upward

•

• , for all

• Downward

• Take as output (using e.g. multiplexer), for all

DA0 = Q0

DAi = Qi ⊕ (Πj<iQj) i ∈ [1,n − 1]

Qi i ∈ [0,n − 1]

Conc
ep

t

P2

Counter

Exercise

• Implement 4-bit Ripple Counter in LogicWorks

• Implement 4-bit Synchronous Counter in LogicWorks

• Design 3 digit BCD counter using 4-bit binary counters

Exe
rci

se

P2

Counter

Tutorial

Sum
mary

P2

LogicWorks

Bus, Register Cells, Datapath

