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Overview
• Focus: Fundamentals of Complex Digital Circuit Design


• Architecture: von Neumann


• Textbook v4: Ch7 7.6, 7.7; v5: Ch6 6.6, 6.7


• Core Ideas:


1. Register-Cell Design


2. Counter
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Register Cell Design
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One register for AND, OR, XOR



1. Specification
• Input: -bit , -bit 


• Mode: , , , only one of these can be 1. If all 0s preserve current value


• Output: -bit output back to input register  ( )


• If , 


• If , 


• If , 


• If , 

n A n B

MAND MOR MXOR

n A DA

MAND = 1 DA = A ⋅ B

MOR = 1 DA = A + B

MXOR = 1 DA = A ⊕ B

MAND + MOR + MXOR = 0 DA = A
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2. Formulation 
3. State Assignment
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Present A 
State

Next A State (DA)

AND=0 
XOR=0 
OR=0

OR=1 
B=0

OR=1 
B=1

AND=1 
B=0

AND=1 
B=1

XOR=1 
B=0

XOR=1 
B=1

0 0 0 1 0 0 0 1

1 1 1 1 0 1 1 0

• For every bit [0,n − 1]



4. Flip-Flop Input Equation

5. Output Equation

Exa
mple

P1

Register Cell

DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

• For every bit [0,n − 1]



6. Optimisation
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DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

= MAND ⋅ Σm(3)
+MOR ⋅ Σm(1,2,3)
+MXOR ⋅ Σm(1,2)
+MOR ⋅ MAND ⋅ MXOR ⋅ Σm(2,3)

• For every bit [0,n − 1]



6. Optimisation

Exa
mple

P1

Register Cell

= m3(MAND + MOR + MOR ⋅ MAMD ⋅ MXOR)
+m2(MOR + MXOR + MOR ⋅ MAMD ⋅ MXOR)
+m1(MOR + MXOR)

DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

= MAND ⋅ Σm(3)
+MOR ⋅ Σm(1,2,3)
+MXOR ⋅ Σm(1,2)
+MOR ⋅ MAND ⋅ MXOR ⋅ Σm(2,3)

• For every bit [0,n − 1]



6. Optimisation
• For every bit [0,n − 1]
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DA = MAND ⋅ (AB)
+MOR ⋅ (A + B)
+MXOR ⋅ (AB + AB)
+MOR ⋅ MAND ⋅ MXOR ⋅ A

= MAND ⋅ Σm(3)
+MOR ⋅ Σm(1,2,3)
+MXOR ⋅ Σm(1,2)
+MOR ⋅ MAND ⋅ MXOR ⋅ Σm(2,3)

= m3(MAND + MOR + MXOR)
+m2(MOR + MXOR + MAND)
+m1(MOR + MXOR)



7. Technology Mapping
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Register Cell 356          CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

 Di = C1AiBi + C2AiBi + C2AiBi

 LOAD = C1 + C2

 Di,FF =  LOAD # Di + LOAD # Ai

If these equations are used directly the cost of the simple approach for a 16-cell 
design is about 40% higher. So by designing a custom register cell using a D !ip-!op 
rather than "nding input logic for a D !ip-!op with enable, the cost can be reduced. 
Further, with the decrease in the number of levels of logic, the delay may also be 
reduced. !

In the preceding example, there are no lateral connections between adjacent 
cells. Among the operations requiring lateral connections are shifts, arithmetic 
operations, and comparisons. One approach to the design of these structures is to 
combine combinational designs given in Chapter 3 with selection logic and !ip-
!ops. A generic approach for multifunctional registers using !ip-!ops with parallel 
load is shown in Figure 6-8. This simple approach bypasses register-cell design but, if 
directly implemented, can result in excessive logic and too many lateral connec-
tions. The alternative is to do a custom register-cell design. In such designs, a critical 
factor is the de"nition of the lateral connection(s) needed. Also, different opera-
tions can be de"ned by controlling input to the least signi"cant cell of the cell 
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AiD

CClock

Cell i
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 FIGURE 6-17
Logic Diagram—Register-Cell Design Example 6-1
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Register Cells

• Register Cells are specific register designed to perform certain computation


• What we just did was for AND, OR, XOR


• Register Cell for AND, OR, XOR, and NOT


• Register Cell for AND, OR, XOR, NOT, and Shifts


• etc.
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Counter Functional 
Blocks
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Ripple Counter; Synchronous Binary Counter; 
BCD Counter



Counter
• Register Cells for counting


• Reset: set counter to 0


• Every CLK tick: add 1 to the register


1. Ripple Counter


2. Synchronous Counters


3. BCD Counter
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Ripple Counter

• 1-bit Counter


• What is the behaviour of the circuit 
on the right?
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Ripple Counter

• 2-bit Counter


• What is the behaviour of the circuit 
on the right?
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Ripple Counter

• 3-bit Counter


• What is the behaviour of the circuit 
on the right?
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Ripple Counter

• 4-bit Counter


• What is the behaviour of the circuit 
on the right?
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Synchronous Binary Counter
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6-6 / Microoperations on a Single Register      347

dependence and unreliable operation. This is particularly true for logic that provides 
feedback paths from counter outputs back to counter inputs. Also, due to the length 
of time required for the ripple to !nish, large ripple counters can be slow circuits. As 
a consequence, synchronous binary counters are favored in all but low-power 
designs, where ripple counters have an advantage. (See Problem 6-9.)

Synchronous Binary Counters

Synchronous counters, in contrast to ripple counters, have the clock applied to the C 
inputs of all "ip-"ops. Thus, the common clock pulse triggers all "ip-"ops simultane-
ously rather than one at a time, as in a ripple counter. A synchronous binary counter 
that counts up by 1 can be constructed from the incrementer in Figure 3-52 and D 
"ip-"ops, as shown in Figure 6-13(a). The carry output CO is added by not placing an 
X value on the C4 output before the contraction of an adder to the incrementer in 
Figure 3-52. Output CO is used to extend the counter to more stages.

Note that the "ip-"ops trigger on the positive-edge transition of the clock. The 
polarity of the clock is not essential here, as it was for the ripple counter. The syn-
chronous counter can be designed to trigger with either the positive or the negative 
clock transition.

SeRial and PaRallel counteRS We will use the synchronous counter in Figure 6-13 
to demonstrate two alternative designs for binary counters. In Figure 6-13(a), a chain 
of 2-input AND gates is used to provide information to each stage about the state of 
the prior stages in the counter. This is analogous to the carry logic in the ripple carry 
adder. A counter that uses such logic is said to have serial gating and is referred to 

 TABLE 6-8
Counting Sequence of Binary Counter

Upward Counting Sequence Downward Counting Sequence

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
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Synchronous Binary Counter
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• Upward  flips when  is all 1; Downward equals inverted UpwardQi Q<i
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dependence and unreliable operation. This is particularly true for logic that provides 
feedback paths from counter outputs back to counter inputs. Also, due to the length 
of time required for the ripple to !nish, large ripple counters can be slow circuits. As 
a consequence, synchronous binary counters are favored in all but low-power 
designs, where ripple counters have an advantage. (See Problem 6-9.)

Synchronous Binary Counters

Synchronous counters, in contrast to ripple counters, have the clock applied to the C 
inputs of all "ip-"ops. Thus, the common clock pulse triggers all "ip-"ops simultane-
ously rather than one at a time, as in a ripple counter. A synchronous binary counter 
that counts up by 1 can be constructed from the incrementer in Figure 3-52 and D 
"ip-"ops, as shown in Figure 6-13(a). The carry output CO is added by not placing an 
X value on the C4 output before the contraction of an adder to the incrementer in 
Figure 3-52. Output CO is used to extend the counter to more stages.

Note that the "ip-"ops trigger on the positive-edge transition of the clock. The 
polarity of the clock is not essential here, as it was for the ripple counter. The syn-
chronous counter can be designed to trigger with either the positive or the negative 
clock transition.

SeRial and PaRallel counteRS We will use the synchronous counter in Figure 6-13 
to demonstrate two alternative designs for binary counters. In Figure 6-13(a), a chain 
of 2-input AND gates is used to provide information to each stage about the state of 
the prior stages in the counter. This is analogous to the carry logic in the ripple carry 
adder. A counter that uses such logic is said to have serial gating and is referred to 

 TABLE 6-8
Counting Sequence of Binary Counter

Upward Counting Sequence Downward Counting Sequence

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
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Synchronous Binary Counter

• Upward


• 


• , for all 


• Downward


• Take  as output (using e.g. multiplexer), for all 

DA0 = Q0

DAi = Qi ⊕ (Πj<iQj) i ∈ [1,n − 1]

Qi i ∈ [0,n − 1]
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Exercise

• Implement 4-bit Ripple Counter in LogicWorks


• Implement 4-bit Synchronous Counter in LogicWorks


• Design 3 digit BCD counter using 4-bit binary counters
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Tutorial
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Bus, Register Cells, Datapath


