

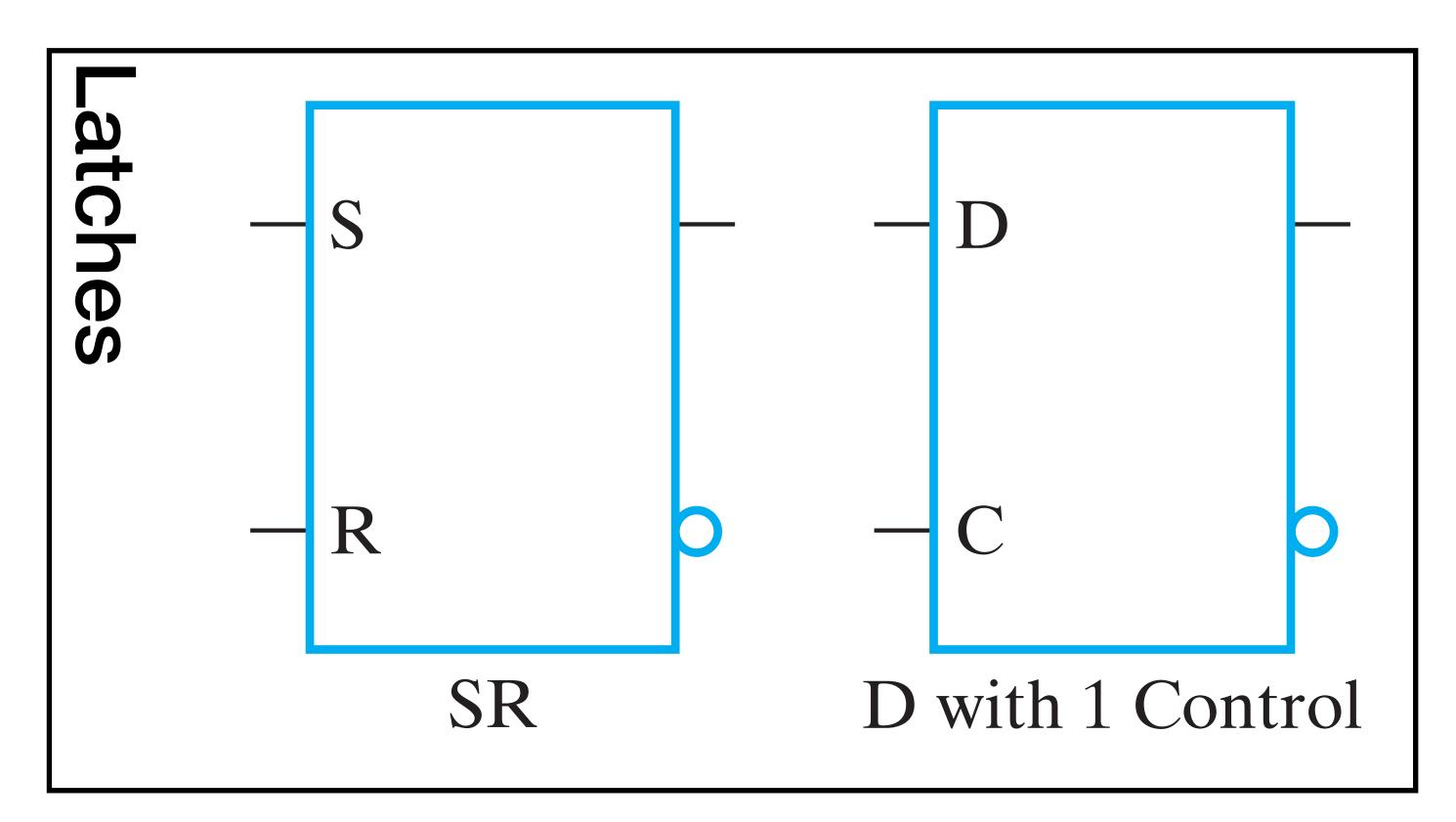
CSCI 150 Introduction to Digital and Computer System Design Lecture 4: Sequential Circuit V

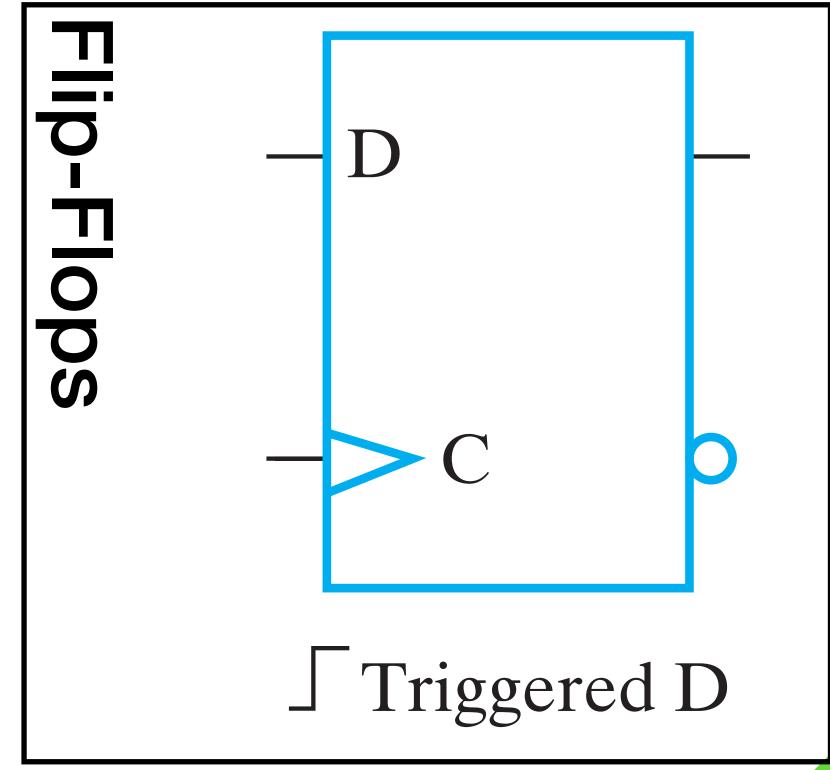
Jetic Gū

Overview

- Focus: Basic Information Retaining Blocks
- Architecture: Sequential Circuit
- Textbook v4: Ch5 5.5, 5.6; v5: Ch4 4.5
- Core Ideas:
 - 1. Sequential Circuit Design Procedures
 - 2. Other Flip-Flop Types

Latches and Flip-Flops





P0 Review

Systematic Design Procedures Sequential Circuits

- 1. Specification
- 2. **Formulation** e.g. using state table or state diagram
- 3. State Assignment: assign binary codes to states
- 4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state entries
- 5. Output Equation Determination: Derive output equations from the output entries
- 6. **Optimisation**
- 7. Technology Mapping
- 8. Verification

Sequential Circuit Design II

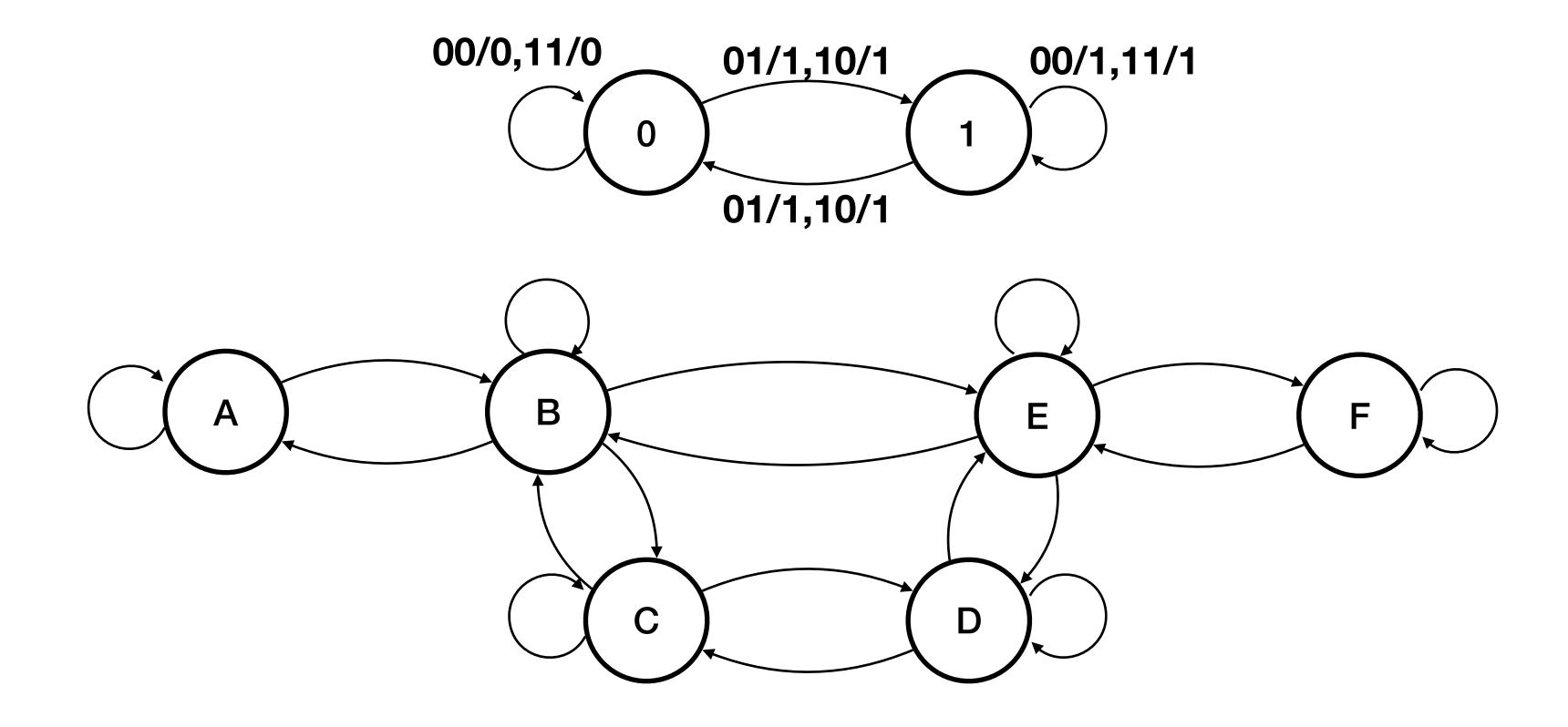
State Assignment; Input Equation Determination; Output Equation Determination

Systematic Design Procedures Sequential Circuits

- 1. Specification
- 2. **Formulation** e.g. using state table or state diagram
- 3. State Assignment: assign binary codes to states
- 4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state entries
- 5. Output Equation Determination: Derive output equations from the output entries
- 6. **Optimisation**
- 7. Technology Mapping
- 8. Verification

2. Formulation

 Sometimes it is more intuitive to describe state transitions then defining the states



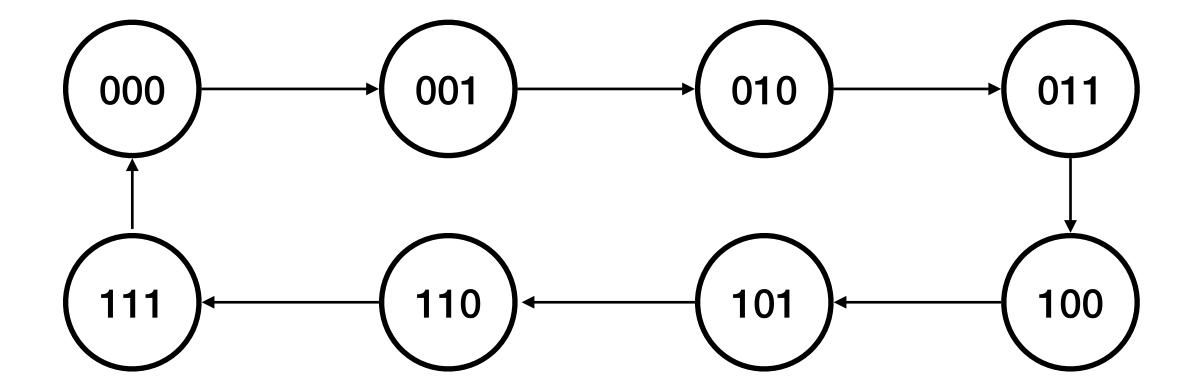
OSIION

2. Formulation

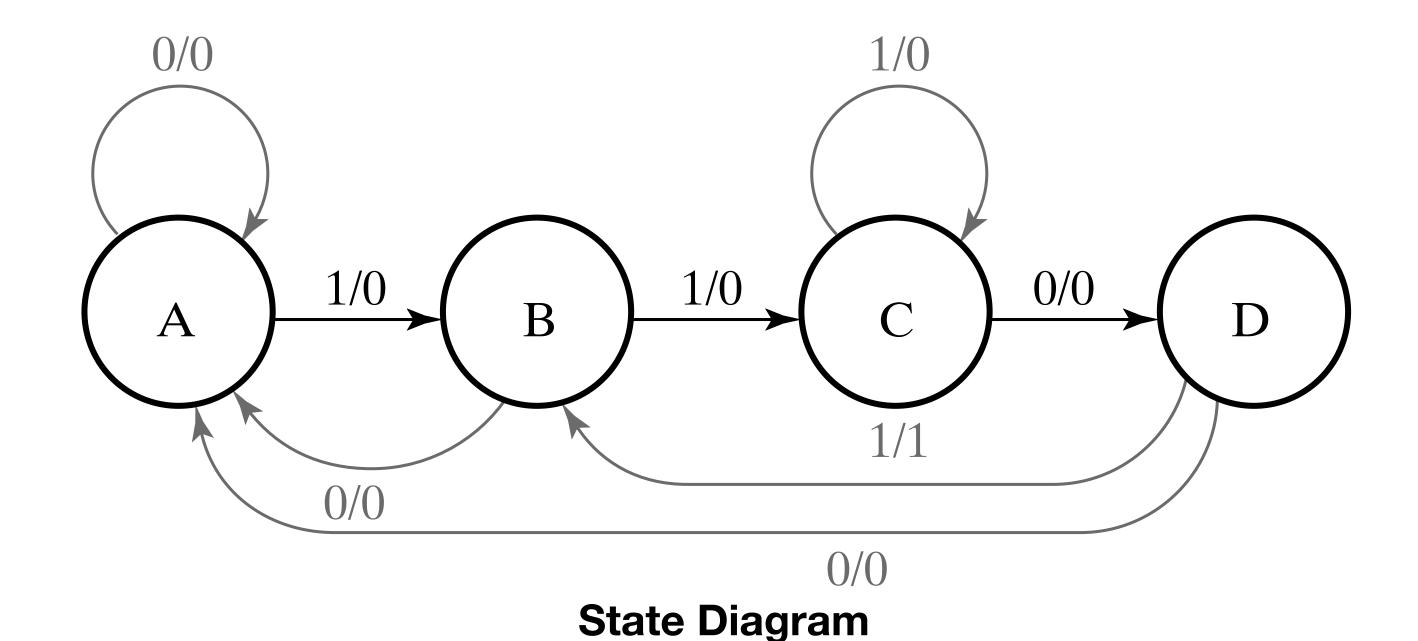
• Incrementer: perform +1 operation every CLK on 3-bit

2. Formulation

• Incrementer: perform +1 operation every CLK on 3-bit



- Used when states are quite complicated and expressed using variables during
 Formulation
- Define the binary values for each state



Course

- Used when states are quite complicated and expressed using variables during
 Formulation
- Define the binary values for each state

Droopt	Next	State	Outp	Output Z		
Present State	$\mathbf{x} = 0$	X = 1	$\mathbf{x} = 0$	X = 1		
A	A	В	0	0		
B	A	C	0	0		
\mathbf{C}	D	C	0	0		
D	A	В	0	1		
	Sta	te Table				

Color Color

Method 1: sequential assignment

$$A = 0, B = 1, C = 2, D = 3, ...$$

Drocont	Next	State	Output Z		
Present State	$\mathbf{X} = 0$	X = 1	$\mathbf{X} = 0$	X = 1	
A 00	00 A	B 01	0	0	
B 01	00 A	C 10	0	0	
C 10	11 D	C 10	0	0	
D 11	00 A	B 01	0	1	
	Sta	te Table			

State lable

Method 2: one hot

$$A = (0001)_2, B = (0010)_2, C = (0100)_2, D = (1000)_2$$

Droont	Next	State	Output Z		
Present State	$\mathbf{x} = 0$	X = 1	$\mathbf{x} = 0$	X = 1	
A 0001	0001 A	B 0010	0	0	
B 0010	0001 A	C 0100	0	0	
C 0100	1000 D	C 0100	0	0	
D 1000	0001 A	B 0010	0	1	
	Qt ₂	to Tahlo			

State lable

- Are these the only methods?
 - No, there's tons
- Are these methods equivalent?
 - No, they each lead to completely different solutions, with different costs
- For this course, we don't require you to come up with the best state assignment solution

Are we using all of the combinations?

- Are we using all of the combinations?
 - No. Some states are not designed to be reachable

- Are we using all of the combinations?
 - No. Some states are not designed to be reachable
 - Could also be used in the future for extensions

4. Flip-Flop Input Expressions5. Output Expressions

- Express all Flip-Flops using input variables
- Express all outputs using variables and Flip-Flop outputs

	Next	State	Output Z		
Present State	$\mathbf{x} = 0$	X = 1	$\mathbf{x} = 0$	X = 1	
A 00	00 A	B 01	0	0	
B 01	00 A	C 10	0	0	
C 10	11 D	C 10	0	0	
D 11	00 A	B 01	0	1	

4. Flip-Flop Input Expressions5. Output Expressions

- Express all Flip-Flops using input variables
- Express all outputs using variables and Flip-Flop outputs

 D_1D_0 for next state S_1S_0 for present

	Next	State	Output Z		
Present State	$\mathbf{x} = 0$	X = 1	$\mathbf{x} = 0$	X = 1	
A 00	00 A	B 01	0	0	
B 01	00 A	C 10	0	0	
C 10	11 D	C 10	0	0	
D 11	00 A	B 01	0	1	

(CO)

4. Flip-Flop Input Expressions5. Output Expressions

- Express all Flip-Flops using input variables
- Express all outputs using variables and Flip-Flop outputs

 D_1D_0 for next state S_1S_0 for present

	Next	State D_1D_0	Output Z		
Present State S_1S_0	$\mathbf{x} = 0$	X = 1	$\mathbf{x} = 0$	X = 1	
00	00	01	0	0	
01	00	10	0	0	
10	11	10	0	0	
11	00	01	0	1	

60

4. Flip-Flop Input Expressions5. Output Expressions

- Express all Flip-Flops using input variables
- Express all outputs using variables and Flip-Flop outputs

	X	S_1S_0	D_1D_0	L
D_1D_0 for next state	0	00	00	0
S_1S_0 for present	0	01	00	0
	0	10	11	0
$D_1 = F_1(X, S_1, S_0) = \Sigma m(2, 5, 6)$	0	11	00	0
	1	00	01	0
$D_0 = F_0(X, S_1, S_0) = \Sigma m(2, 4, 7)$	1	01	10	0
7 100	1	10	10	0
$Z=m_7$	1	11	01	1

C'OUCS,

- Unused states can be implemented as don't care conditions
- In this example $m_0, m_1, m_{12}, m_{13}, m_{14}, m_{15}$ are unused, and can all be **don't care conditions**

Pre	sent (State	Input	Next Stat		ate
A	В	С	X	Α	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

- Unused states can be implemented as don't care conditions
- In this example $m_0, m_1, m_{12}, m_{13}, m_{14}, m_{15}$ are unused, and can all be **don't care conditions**

$$D_A = \sum m(5,7,8,9,11)$$

Pre	Present State		Input	Next Stat		ate
A	В	С	X	Α	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

SW6

- Unused states can be implemented as don't care conditions
- In this example $m_0, m_1, m_{12}, m_{13}, m_{14}, m_{15}$ are unused, and can all be **don't care conditions**

$$D_A = \sum m(5,7,8,9,11)$$

$$D_B = \sum m(3,4)$$

Pre	sent (State	Input	Next Stat		ate
A	В	С	X	A	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

- Unused states can be implemented as don't care conditions
- In this example $m_0, m_1, m_{12}, m_{13}, m_{14}, m_{15}$ are unused, and can all be **don't care conditions**

$$D_A = \sum m(5,7,8,9,11)$$

$$D_B = \sum m(3,4)$$

$$D_C = \sum m(2,4,6,8,10)$$

Pre	sent (State	Input	Next Stat		ate
A	В	С	X	A	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

- Unused states can be implemented as don't care conditions
- In this example m_0 , m_1 , m_{12} , m_{13} , m_{14} , m_{15} are unused, and can all be **don't care conditions**

$$D_A = \Sigma m(5,7,8,9,11)$$

$$D_B = \Sigma m(3,4)$$

$$D_C = \Sigma m(2,4,6,8,10)$$

$$d = \Sigma m(0,1,12,13,14,15)$$

Present State			Input	Next Stat		ate
A	В	С	X	A	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

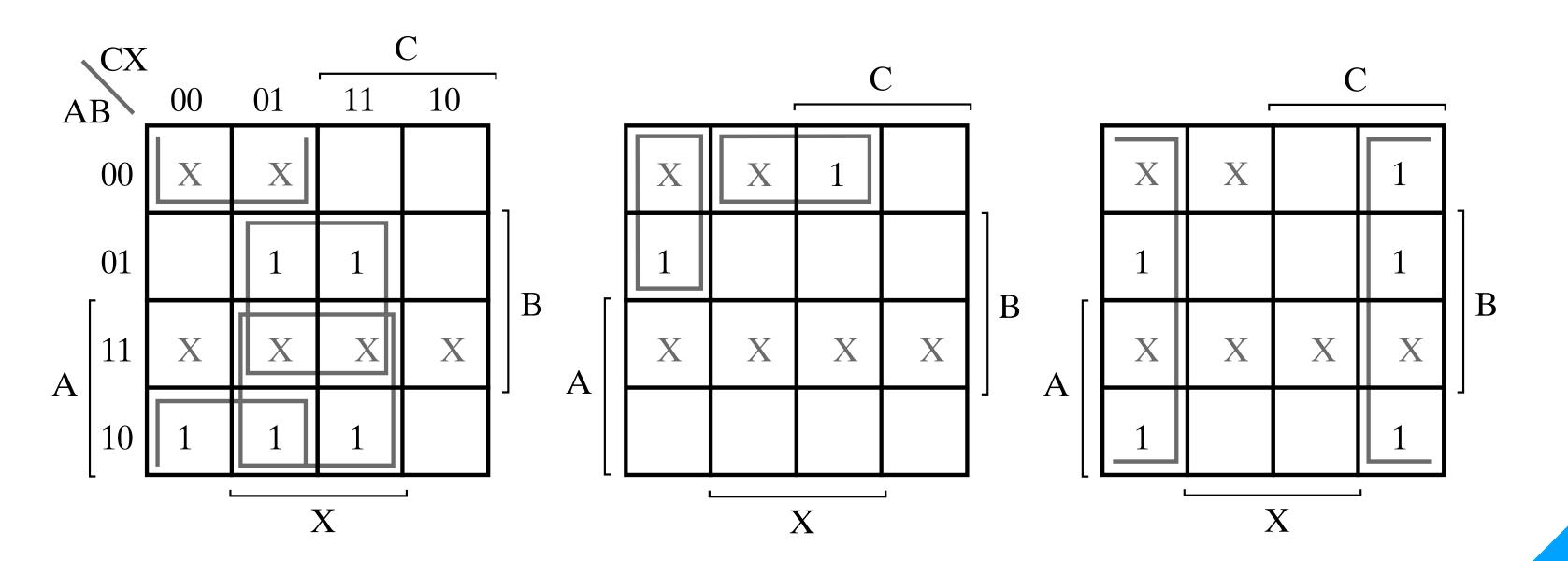
```
D_A = \Sigma m(5,7,8,9,11)
D_B = \Sigma m(3,4)
D_C = \Sigma m(2,4,6,8,10)
d = \Sigma m(0,1,12,13,14,15)
```

$$D_A = \Sigma m(5,7,8,9,11)$$

$$D_B = \Sigma m(3,4)$$

$$D_C = \Sigma m(2,4,6,8,10)$$

$$d = \Sigma m(0,1,12,13,14,15)$$

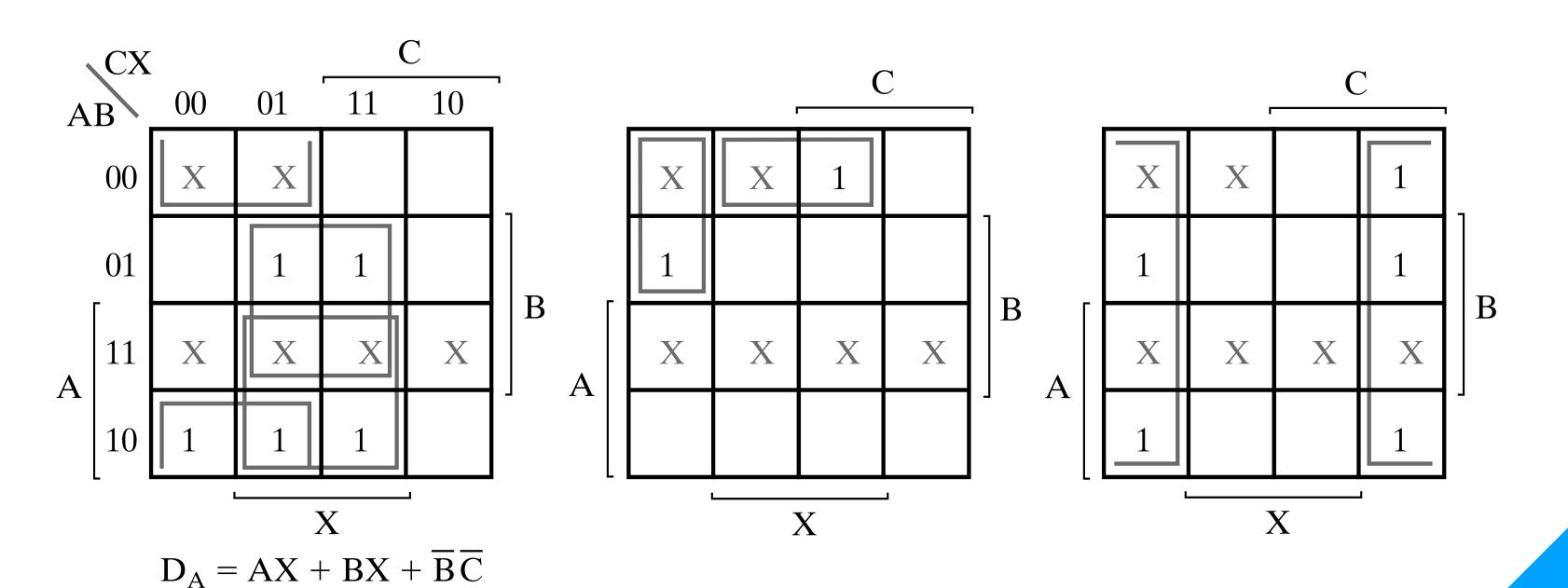


$$D_A = \Sigma m(5,7,8,9,11)$$

$$D_B = \Sigma m(3,4)$$

$$D_C = \Sigma m(2,4,6,8,10)$$

$$d = \Sigma m(0,1,12,13,14,15)$$

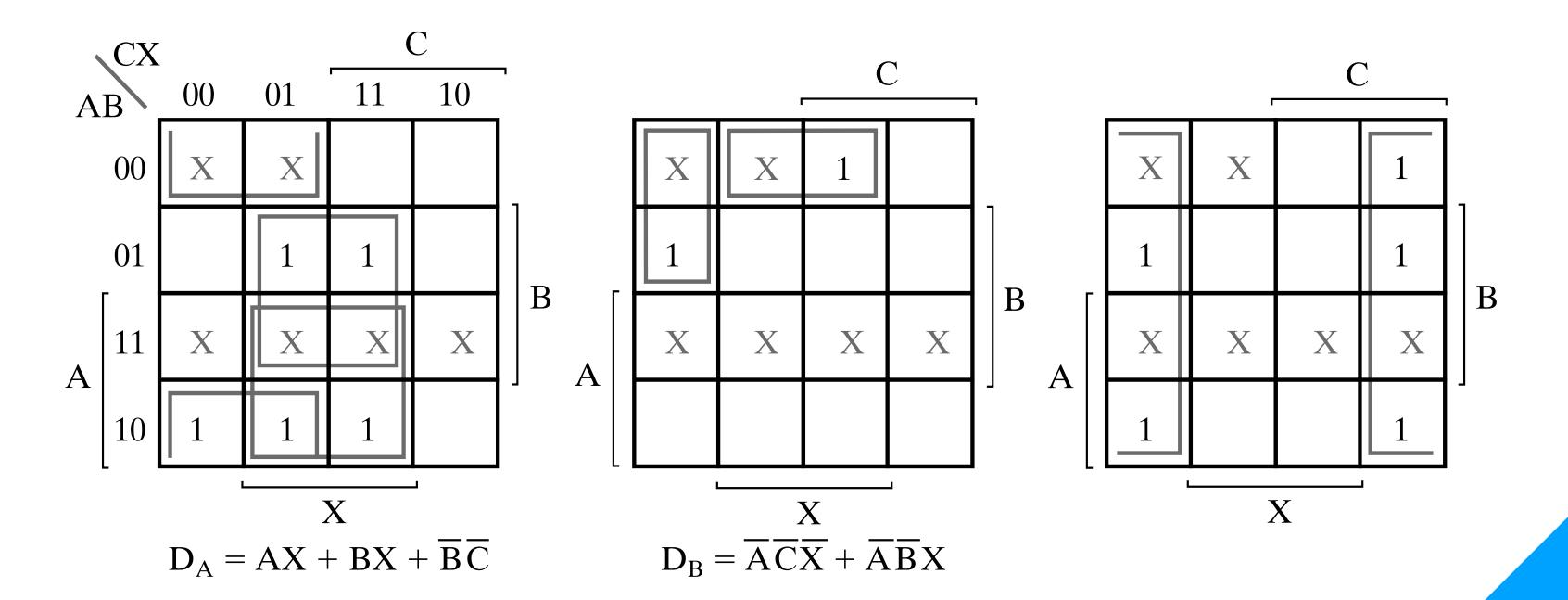


$$D_A = \Sigma m(5,7,8,9,11)$$

$$D_B = \Sigma m(3,4)$$

$$D_C = \Sigma m(2,4,6,8,10)$$

$$d = \Sigma m(0,1,12,13,14,15)$$

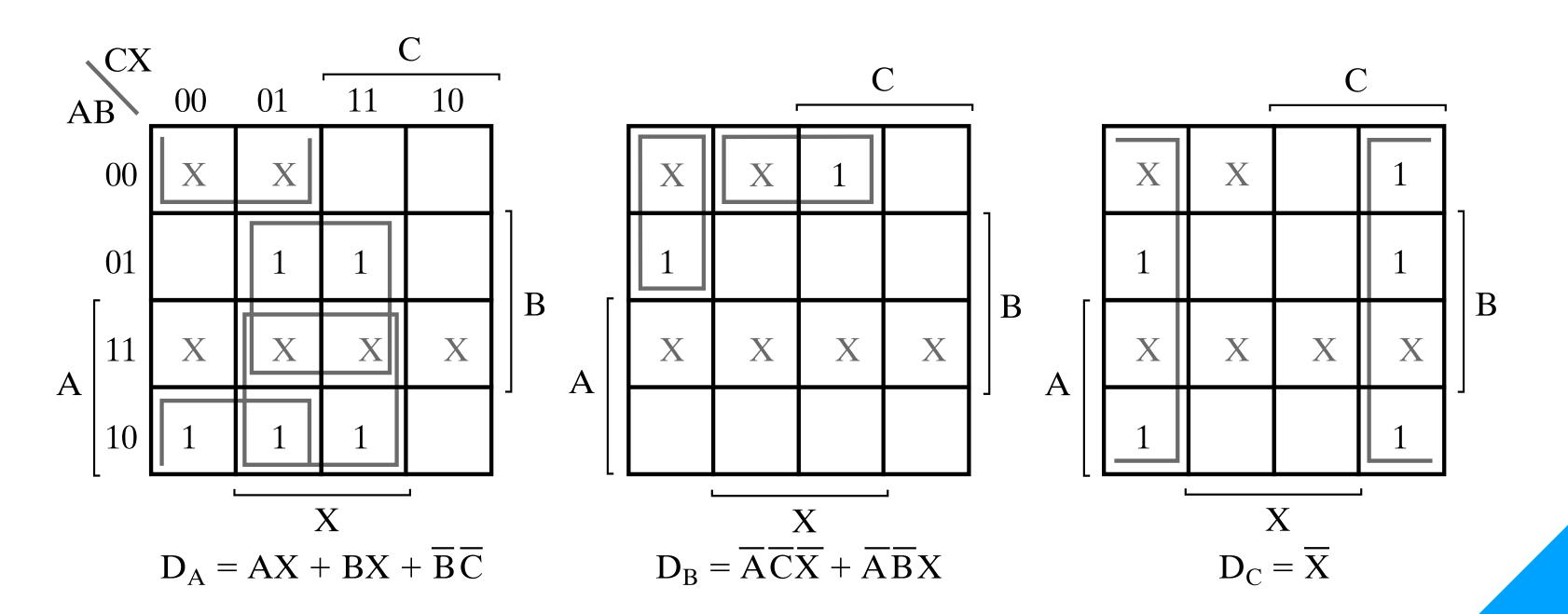


$$D_A = \Sigma m(5,7,8,9,11)$$

$$D_B = \Sigma m(3,4)$$

$$D_C = \Sigma m(2,4,6,8,10)$$

$$d = \Sigma m(0,1,12,13,14,15)$$



Systematic Design Procedures Sequential Circuits

- 1. Specification
- 2. **Formulation** e.g. using state table or state diagram
- 3. State Assignment: assign binary codes to states
- 4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state entries
- 5. Output Equation Determination: Derive output equations from the output entries
- 6. **Optimisation**
- 7. Technology Mapping
- 8. Verification

Summary

- 3. State Assignment: assign binary codes to states
- 4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state entries
- 5. Output Equation Determination: Derive output equations from the output entries
- 6. Optimisation with unused states

Some Other Flip-Flop Types

JK Flip-Flop; T Flip-Flop

Conditional Inverter

T	Q(t+1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

Coucos

- Follow 8 step design principles
 - Write down the boolean expression
 - Draw the circuit diagram

T	Q(t+1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

- 3. State Assignment
- 4. Flip-Flop Input Equation

- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

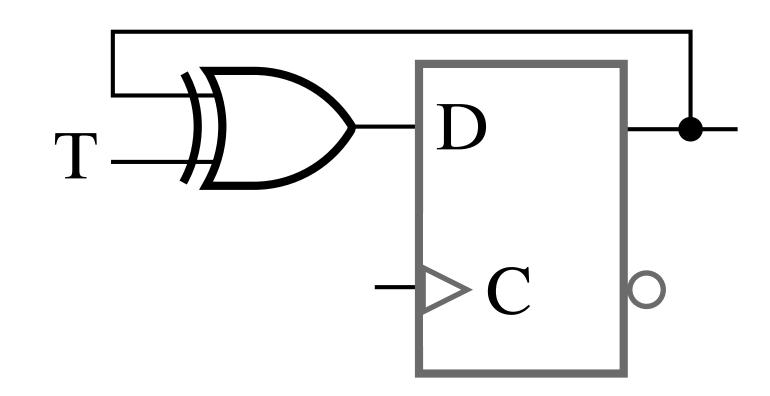
T	Q(t+1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t + 1) = Q \oplus T$
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

T	Q(t+1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t+1) = Q \oplus T$

- 6. Optimisation
- 7. Technology Mapping



T	Q(t+1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

• Similar to *SR* Master-Slave Flip-Flop with 11 input inverting internal value

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

Color Color

- Follow 8 step design principles
 - Write down the boolean expression
 - Draw the circuit diagram

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

- 3. State Assignment
- 4. Flip-Flop Input Equation

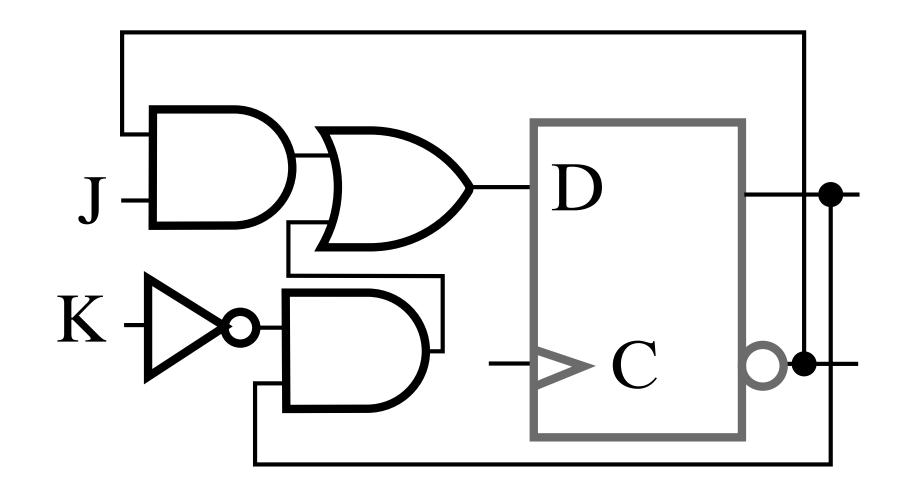
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t+1) = J \cdot \overline{Q} + \overline{K} \cdot Q$
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t+1) = J \cdot \overline{Q} + \overline{K} \cdot Q$
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

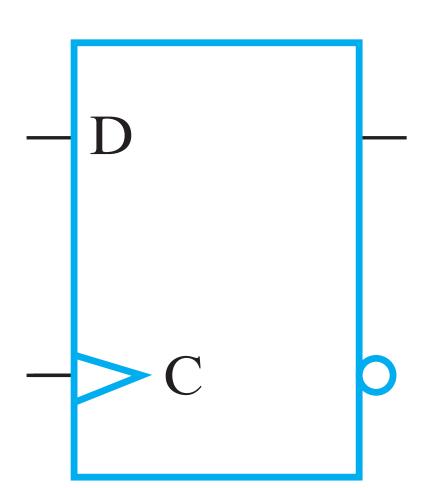


J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

Silving.

LogicWorks Exercise

- Implement D flip flop using D latch and SR latch Save it as a component in your library
- Implement circuit $D_S = X \oplus Y \oplus S$, where D_S is a D flip flop
- Implement $D_A=\overline{X}A+XY,$ $D_B=\overline{X}B+XA,$ Z=XB
- Draw the state table and diagram, and verify your table with LogicWorks



Implementation

- Implement JK Flip-Flop
 - ullet Is there any other way to implement? What if you cannot use D Flip-Flop?
- Implement T Flip-Flop