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Overview
• Focus: Basic Information Retaining Blocks


• Architecture: Sequential Circuit


• Textbook v4: Ch5 5.5, 5.6; v5: Ch4 4.5


• Core Ideas:


1. Sequential Circuit Design Procedures


2. Other Flip-Flop Types



Latches and Flip-Flops
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When the positive edge occurs, the clock input changes to 1. This disables the master 
latch so that its value is !xed and enables the slave latch so that it copies the state of 
the master latch. The state of the master latch to be copied is the state that is present 
at the positive edge of the clock. Thus, the behavior appears to be edge triggered. 
With the clock input equal to 1, the master latch is disabled and cannot change, so 
the state of both the master and the slave remain unchanged. Finally, when the clock 
input changes from 1 to 0, the master is enabled and begins following the D value. 
But during the 1- to-  0 transition, the slave is disabled before any change in the master 
can reach it. Thus, the value stored in the slave remains unchanged during this 
 transition. An alternative implementation that requires fewer gates is given in 
 Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and  "ip-  "ops are 
shown in Figure 4-11. A  "ip-  "op or latch is designated by a rectangular block with 
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Systematic Design Procedures 
Sequential Circuits

1. Specification


2. Formulation 
e.g. using state table or state diagram


3. State Assignment: assign binary codes to states


4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state 
entries


5. Output Equation Determination: Derive output equations from the output entries


6. Optimisation


7. Technology Mapping


8. Verification
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Sequential Circuit 
Design II

Sum
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State Assignment; Input Equation Determination; 
Output Equation Determination
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2. Formulation
• Sometimes it is more intuitive to describe state transitions then defining the 

states
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01/1,10/1

01/1,10/1

00/0,11/0 00/1,11/1
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• Incrementer: perform +1 operation every CLK on 3-bit



2. Formulation
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• Incrementer: perform +1 operation every CLK on 3-bit

000 001 010 011

111 110 101 100



3. State Assignment
• Used when states are quite complicated and expressed using variables during 

Formulation 

• Define the binary values for each state
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equal to 1 when the previous three inputs to the circuit were 110 and current input
is a 1. Otherwise, Z equals 0. 

The first step in the formulation process is to determine whether the state
diagram or table must be a Mealy model or Moore model circuit. The portion of
the preceding specification that says “... making Z equal to 1 when the previous
three inputs to the circuit are 110 and the current input is a 1” implies that the out-
put is determined from not only the current state, but also the current input. As a
consequence, a Mealy model circuit with the output dependent on both state and
inputs is required.

Recall that a key factor in the formulation of any state diagram is to recog-
nize that states are used to “remember” something about the history of the inputs.
For example, for the sequence 1101 to be able to produce the output value 1 coin-
cident with the final 1 in the sequence, the circuit must be in a state that “remem-
bers” that the previous three inputs were 110. With this concept in mind, we begin
to formulate the state diagram by defining an arbitrary initial state A as the reset
state and the state in which “none of the sequence to be recognized has occurred.”
If a 1 occurs on the input, since 1 is the first bit in the sequence, this event must be
“remembered,” and the state after the clock pulse cannot be A. So a second state,
B, is established to represent the occurrence of the first 1 in the sequence. Further,
to represent the occurrence of the first 1 in the sequence, a transition is placed
from A to B and labeled with a 1. Since this is not the final 1 in the sequence 1101,
its output is a 0. This initial portion of the state diagram is given in Figure 20(a).

(a)

1/0
A B

(b)

1/0 1/0
A CB

(c)

1/0 1/0 0/0 1/1
A C DB

(d)

1/0 1/0 0/0

1/0

1/1

0/0

0/0
0/0

A C DB

FIGURE 20
Construction of a State Diagram for Example 4
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State Diagram



3. State Assignment
• Used when states are quite complicated and expressed using variables during 

Formulation 

• Define the binary values for each state
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interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts. 

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present 
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
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1
0
1
0
1
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0
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0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

State Table



3. State Assignment
• Method 1: sequential assignment 

, , , , …A = 0 B = 1 C = 2 D = 3
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interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts. 

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder
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3. State Assignment
• Method 2: one hot 

, , , A = (0001)2 B = (0010)2 C = (0100)2 D = (1000)2
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interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts. 

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present 
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

State Table

0001 0001
00010010

0100 1000
1000 0001

0100
0100
0010

0010



3. State Assignment

• Are these the only methods?


• No, there’s tons


• Are these methods equivalent?


• No, they each lead to completely different solutions, with different costs


• For this course, we don’t require you to come up with the best state 
assignment solution
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3. State Assignment

• Are we using all of the combinations?

• No. Some states are not designed to be reachable
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3. State Assignment

• Are we using all of the combinations?

• No. Some states are not designed to be reachable

• Could also be used in the future for extensions

Thin
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4. Flip-Flop Input Expressions 
5. Output Expressions

• Express all Flip-Flops using input variables


• Express all outputs using variables and Flip-Flop outputs
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interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts. 

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.
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5. Output Expressions
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• Express all outputs using variables and Flip-Flop outputs
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interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts. 

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.
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• Express all outputs using variables and Flip-Flop outputs
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interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts. 

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.
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4. Flip-Flop Input Expressions 
5. Output Expressions

• Express all Flip-Flops using input variables


• Express all outputs using variables and Flip-Flop outputs
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D1 = F1(X, S1, S0) = Σm(2,5,6)

D0 = F0(X, S1, S0) = Σm(2,4,7)

Z = m7



6. Optimisation with Unused 
States

• Unused states can be implemented as 
don’t care conditions


• In this example 
, , , , ,  

are unused, and can all be don’t care 
conditions

m0 m1 m12 m13 m14 m15
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The three input equations for the D  !ip-  !ops are derived from the  next-  state 
values and are simpli"ed in the maps of Figure 4-23. Each map has six don’ t-  care 
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be 
drawn here.

It is possible that outside interference or a malfunction will cause the circuit to 
enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least 

 TABLE 4-7
State Table for Designing with Unused States
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states. Depending on the function and application of the circuit, a number of
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be specified. Typically, next states are selected such that one of the normally occur-
ring states is reached within a few clock cycles, regardless of the input values. The
decision as to which of the three options to apply, either individually or in combi-
nation, is based on the application of the circuit or the policies of a particular
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 Flip-FlopJK

• Similar to  Master-Slave Flip-Flop 
with 11 input inverting internal value
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 Flip-FlopJK

• Follow 8 step design principles


• Write down the boolean expression


• Draw the circuit diagram
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 Flip-FlopJK
3. State Assignment


4. Flip-Flop Input Equation 

5. Output Equation Determination


6. Optimisation


7. Technology Mapping
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3. State Assignment


4. Flip-Flop Input Equation 



5. Output Equation Determination


6. Optimisation


7. Technology Mapping

Q(t + 1) = J ⋅ Q + K ⋅ Q
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LogicWorks Exercise
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YX Z
• Implement  flip flop using  latch and  latch 

Save it as a component in your library


• Implement circuit , where  is a  flip flop


• Implement , , 


• Draw the state table and diagram, and verify your table with 
LogicWorks

D D SR

DS = X ⊕ Y ⊕ S DS D

DA = XA + XY DB = XB + XA Z = XB

4-3 / Flip-Flops      207

When the positive edge occurs, the clock input changes to 1. This disables the master 
latch so that its value is !xed and enables the slave latch so that it copies the state of 
the master latch. The state of the master latch to be copied is the state that is present 
at the positive edge of the clock. Thus, the behavior appears to be edge triggered. 
With the clock input equal to 1, the master latch is disabled and cannot change, so 
the state of both the master and the slave remain unchanged. Finally, when the clock 
input changes from 1 to 0, the master is enabled and begins following the D value. 
But during the 1- to-  0 transition, the slave is disabled before any change in the master 
can reach it. Thus, the value stored in the slave remains unchanged during this 
 transition. An alternative implementation that requires fewer gates is given in 
 Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and  "ip-  "ops are 
shown in Figure 4-11. A  "ip-  "op or latch is designated by a rectangular block with 

(a) Latches
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(c) Edge-triggered flip-flops
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 FIGURE 4-11
Standard Graphics Symbols for Latches and  Flip-  Flop
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Implementation

• Implement  Flip-Flop


• Is there any other way to implement? What if you cannot use  Flip-Flop?


• Implement  Flip-Flop
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