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Overview
• Focus: Review


• Architecture: Combinational Logic Circuit


• Textbook v4: Ch1-4; v5: Ch1-3


• Core Ideas:


1. Digital Information Representation (Lecture 1)


2. Combinational Logic Circuits (Lecture 2)


3. Combinational Functional Blocks, Arithmetic Blocks (Lecture 3)



Lecture 3: Combinational 
Logic Design

Sum
mary

P3 
Comb. Design

5 Steps Systematic Design Procedures; Functional 
Blocks; Decoder, Enabler, Multiplexer; Arithmetic Blocks



Systematic Design Procedures
1. Specification: Write a specification for the circuit


2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions


3. Optimisation: Apply optimisation, minimise the number of logic gates and 
literals required


4. Technology Mapping: Transform design to new diagram using available 
implementation technology


5. Verification: Verify the correctness of the final design in meeting the 
specifications
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Hierarchical Design

• "divide-and-conquer"


• Circuit is broken up into individual functional pieces (blocks)


• Each block has explicitly defined Interface (I/O) and Behaviour


• A single block can be reused multiple times to simplify design process


• If a single block is too complex, it can be further divided into smaller 
blocks, to allow for easier designs
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Value-Fixing, Transferring, and 
Inverting
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① Value-Fixing: giving a constant value to a wire


• ; ;


② Transferring: giving a variable (wire) value from another variable (wire)


• ;


③ Inverting: inverting the value of a variable


•

F = 0 F = 1

F = X

F = X



Vector Denotation
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④ Multiple-bit Function 

• Functions we’ve seen so far has only one-bit output: 0/1


• Certain functions may have -bit output


• , each  is a one-bit function


• Curtain Motor Control Circuit: 

n

F(n − 1 : 0) = (Fn−1, Fn−2, . . . , F0) Fi

F = (FMotor1
, FMotor2

, FLight)



Taking part of the Vector
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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Implementation of Multibit Rudimentary Functions
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④ Multiple-bit Function
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Output: (F2, F1)

Output: (F3, F1, F0)
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Enabler
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⑤ Enabler 

• Transferring function, but with an additional  signal acting as switchEN

EN X F

0 X 0

1 0 0

1 1 1



Enabler
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⑤ Enabler 

• Transferring function, but with an additional  signal acting as switchEN

EN
X

F EN
X

F



Decoder
• -bit input, bits output


• 


• Design: use hierarchical designs!

n 2n

Di = mi
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A1 A0 D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1
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each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by 
a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders, 
one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm 
function using a single AND gate with more inputs. Unfortunately, as decoders 
become larger, this approach gives a high gate-input cost. In this section, we give 
a  procedure that uses design hierarchy and collections of AND gates to con-
struct any decoder with n inputs and 2n outputs. The resulting decoder has the 
same or a lower gate-input cost than the one constructed by simply enlarging each 
AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder 
and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms. 
Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line 
decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting 
structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-
ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND 
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Encoder

• Inverse operation of a decoder


•  inputs, only one is giving positive 
input1


•  outputs

2n

n
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1. In reality, could be less
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A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7



Priority Encoder

• Additional Validity Output 


• Indicating whether the input is valid (contains 1)


• Priority


• Ignores  if 

V

D<i Di = 1
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Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output

n

n
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Common Techniques

• Implementing Multiplexer using Decoders


• Implementing Multiplexer using smaller Multiplexers


• Implementing Sum-of-Minterm using Decoder 
(use OR gate)


• Implementing Sum-of-Minterm using Multiplexer 
(use value fixing)
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• 1-bit Half Adder and Full Adder


• n-bit Adder


• 1-bit subtractor and n-bit subtractor


• 2s complement and binary adder-
subtractor
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1-bit Adder

• Half adder 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Unsigned Binary 
Subtraction
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Full Unsigned Subtraction
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ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which
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FIGURE 6
Block Diagram of Binary Adder–Subtractor
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Adder-Subtractor II
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ARITHMETIC FUNCTIONS AND HDLS

adder interconnected to form an adder–subtractor. We have used 2s complement,
since it is most prevalent in modern systems. The 2s complement can be obtained
by taking the 1s complement and adding 1 to the least significant bit. The 1s com-
plement can be implemented easily with inverter circuits, and we can add 1 to the
sum by making the input carry of the parallel adder equal to 1. Thus, by using 1s
complement and an unused adder input, the 2s complement is obtained inexpen-
sively. In 2s complement subtraction, as the correction step after adding, we com-
plement the result and append a minus sign if an end carry does not occur. The
correction operation is performed by using either the adder–subtractor a second
time with M ! 0 or a selective complementer as in Figure 6. 

The circuit for subtracting A " B consists of a parallel adder as shown in
Figure 5, with inverters placed between each B terminal and the corresponding
full-adder input. The input carry C0 must be equal to 1. The operation that is per-
formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the
2s complement of B. For unsigned numbers, it gives A " B if  or the 2s
complement of B " A if . 

The addition and subtraction operations can be combined into one circuit
with one common binary adder. This is done by including an exclusive-OR gate
with each full adder. A 4-bit adder–subtractor circuit is shown in Figure 7. Input S
controls the operation. When S ! 0 the circuit is an adder, and when S ! 1 the cir-
cuit becomes a subtractor. Each exclusive-OR gate receives input S and one of the
inputs of B, Bi. When S ! 0, we have Bi ⊕ 0. If the full adders receive the value of
B, and the input carry is 0, the circuit performs A plus B. When S ! 1, we have Bi ⊕
1 =  and C0 ! 1. In this case, the circuit performs the operation A plus the 2s
complement of B. 
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FIGURE 7
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