
03.03.21 12:03CSCI 150
Introduction to Digital and Computer

System Design
Midterm Review II

Jetic Gū

Overview
• Focus: Review

• Architecture: Combinational Logic Circuit

• Textbook v4: Ch1-4; v5: Ch1-3

• Core Ideas:

1. Digital Information Representation (Lecture 1)

2. Combinational Logic Circuits (Lecture 2)

3. Combinational Functional Blocks, Arithmetic Blocks (Lecture 3)

Lecture 3: Combinational
Logic Design

Sum
mary

P3
Comb. Design

5 Steps Systematic Design Procedures; Functional
Blocks; Decoder, Enabler, Multiplexer; Arithmetic Blocks

Systematic Design Procedures
1. Specification: Write a specification for the circuit

2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions

3. Optimisation: Apply optimisation, minimise the number of logic gates and
literals required

4. Technology Mapping: Transform design to new diagram using available
implementation technology

5. Verification: Verify the correctness of the final design in meeting the
specifications

Conc
ep

t

P3.1
Comb. Design

Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour

• A single block can be reused multiple times to simplify design process

• If a single block is too complex, it can be further divided into smaller
blocks, to allow for easier designs

Conc
ep

t

P3.1
Comb. Design

Value-Fixing, Transferring, and
Inverting

Conc
ep

t

P3.2
Elementary Func.

① Value-Fixing: giving a constant value to a wire

• ; ;

② Transferring: giving a variable (wire) value from another variable (wire)

• ;

③ Inverting: inverting the value of a variable

•

F = 0 F = 1

F = X

F = X

Vector Denotation

Conc
ep

t

P3.2
Elementary Func.

④ Multiple-bit Function

• Functions we’ve seen so far has only one-bit output: 0/1

• Certain functions may have -bit output

• , each is a one-bit function

• Curtain Motor Control Circuit:

n

F(n − 1 : 0) = (Fn−1, Fn−2, . . . , F0) Fi

F = (FMotor1
, FMotor2

, FLight)

Taking part of the Vector

Conc
ep

t

P1
Elementary Func.124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

④ Multiple-bit Function

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Output: (F2, F1)

Output: (F3, F1, F0)

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Dimension

Selected
Indices

Enabler

Conc
ep

t

P3.2
Elementary Func.

⑤ Enabler

• Transferring function, but with an additional signal acting as switchEN

EN X F

0 X 0

1 0 0

1 1 1

Enabler

Conc
ep

t

P3.2
Elementary Func.

⑤ Enabler

• Transferring function, but with an additional signal acting as switchEN

EN
X

F EN
X

F

Decoder
• -bit input, bits output

•

• Design: use hierarchical designs!

n 2n

Di = mi

Conc
ep

t

P3.3
Adv. Func. Blocks

A1 A0 D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

3-5 / Decoding 129

each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by
a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders,
one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm
function using a single AND gate with more inputs. Unfortunately, as decoders
become larger, this approach gives a high gate-input cost. In this section, we give
a procedure that uses design hierarchy and collections of AND gates to con-
struct any decoder with n inputs and 2n outputs. The resulting decoder has the
same or a lower gate-input cost than the one constructed by simply enlarging each
AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder
and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms.
Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line
decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting
structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-
ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND

A
D0 ! A

D0

D1 ! A

D1

0 1 0
1 0 1

(a) (b)

A

 FIGURE 3-12
A 1–to–2-Line Decoder

A1

0
0
1
1

A0

0
1
0
1

D0

1
0
0
0

D1

0
1
0
0

D2

0
0
1
0

D3

0
0
0
1

(a)

(b)

A

D A1A0

A1A0

A1A0

A1A0D

D

D

1

A0

 FIGURE 3-13
A 2–to–4-Line Decoder

M03_MANO0637_05_SE_C03.indd 129 23/01/15 1:51 PM

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Encoder

• Inverse operation of a decoder

• inputs, only one is giving positive
input1

• outputs

2n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

1. In reality, could be less

A0

A1

A2

A0

A1

A2

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

EncoderP3.3
Adv. Func. Blocks

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Conc
ep

t

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Priority Encoder

• Additional Validity Output

• Indicating whether the input is valid (contains 1)

• Priority

• Ignores if

V

D<i Di = 1

P3.3
Adv. Func. Blocks

Conc
ep

t

Priority
Encoder

0

1

2

3

0

1

V

Priority EncoderP3.3
Adv. Func. Blocks

Priority
Encoder

0

1

2

3

0

1

V

Conc
ep

t

D3 D2 D1 D0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

V = D3 + D2 + D1 + D0

A1 = D3 + D3D2 = D2 + D3

A0 = D3D2D1 + D3

= D2D1 + D3

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y

Common Techniques

• Implementing Multiplexer using Decoders

• Implementing Multiplexer using smaller Multiplexers

• Implementing Sum-of-Minterm using Decoder 
(use OR gate)

• Implementing Sum-of-Minterm using Multiplexer 
(use value fixing)

Conc
ep

t

P3.3
Adv. Func. Blocks

• 1-bit Half Adder and Full Adder

• n-bit Adder

• 1-bit subtractor and n-bit subtractor

• 2s complement and binary adder-
subtractor

Conc
ep

t

P3.4
Arithmetic Blocks Arithmetic Blocks

1-bit Adder

• Half adder 
input ,  
output ,

X Y
S C

Rev
iew

P0
Binary Adder

X
+Y

Augend

Carries

Addend

Sum S

C

+

Input
Output Z

X
+Y

Augend

Carries

Addend

Sum S

C

+

Input
Output

• Full adder 
input , , ; 
output ,

X Y Z
S C

Unsigned Binary
Subtraction

Rev
iew

P3.4
Arithmetic Blocks

00110
10110

−10011
00011

Input
Output

0
10110
10011
00011

0
Minuend X0:n−1

Borrows

Subtrahend Y0:n−1

Difference D0:n−1

B Z

Technology

• 1 bit Unsigned Subtractor

X0
Y0
Z

1-Bit Binary
Subtractor

B

D D0

X1
Y1

1-Bit Binary
Subtractor

B

D D1

…

Full Unsigned Subtraction

Conc
ep

t

P3.4
Arithmetic Blocks

ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor

���

X Y

Output

Conc
ep

t

P3.4
Arithmetic Blocks

ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor

���

ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor

���

X Y

Output

Adder Subtractor I

Adder-Subtractor II

Conc
ep

t

P3.4
Arithmetic Blocks

ARITHMETIC FUNCTIONS AND HDLS

adder interconnected to form an adder–subtractor. We have used 2s complement,
since it is most prevalent in modern systems. The 2s complement can be obtained
by taking the 1s complement and adding 1 to the least significant bit. The 1s com-
plement can be implemented easily with inverter circuits, and we can add 1 to the
sum by making the input carry of the parallel adder equal to 1. Thus, by using 1s
complement and an unused adder input, the 2s complement is obtained inexpen-
sively. In 2s complement subtraction, as the correction step after adding, we com-
plement the result and append a minus sign if an end carry does not occur. The
correction operation is performed by using either the adder–subtractor a second
time with M ! 0 or a selective complementer as in Figure 6.

The circuit for subtracting A " B consists of a parallel adder as shown in
Figure 5, with inverters placed between each B terminal and the corresponding
full-adder input. The input carry C0 must be equal to 1. The operation that is per-
formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the
2s complement of B. For unsigned numbers, it gives A " B if or the 2s
complement of B " A if .

The addition and subtraction operations can be combined into one circuit
with one common binary adder. This is done by including an exclusive-OR gate
with each full adder. A 4-bit adder–subtractor circuit is shown in Figure 7. Input S
controls the operation. When S ! 0 the circuit is an adder, and when S ! 1 the cir-
cuit becomes a subtractor. Each exclusive-OR gate receives input S and one of the
inputs of B, Bi. When S ! 0, we have Bi ⊕ 0. If the full adders receive the value of
B, and the input carry is 0, the circuit performs A plus B. When S ! 1, we have Bi ⊕
1 = and C0 ! 1. In this case, the circuit performs the operation A plus the 2s
complement of B.

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A3 B2 A2 B1 A1 B0 A0

FIGURE 7
Adder–Subtractor Circuit

A B#
A B$

Bi

���

Add/Subtract

Z

X0Y0X1Y1X2Y2X3Y3

