

CSCI 150 Introduction to Digital and Computer System Design

Lecture 2: Combinational Logical Circuits III

Jetic Gū

Overview

- Focus: Boolean Algebra
- Architecture: Combinatory Logical Circuits
- Textbook v4: Ch2 2.3; v5: Ch2 2.3
- Core Ideas:
 - 1. Boolean Algebra II: Standard Forms

- Boolean Algebra vs Physical Implementation of Logic Circuits
- AND, OR, NOT Operators and Gates
 - Simple digital circuit implementation
 - Algebraic manipulation using Binary Identities

Boolean Algebra II: Standard Forms

Minterm/Maxterm; Sum of Products; Product of Sums

Standard Forms

- Equivalent expressions can be written in a variety of ways
 Standard forms: typical such ways that incorporates some unique characteristics -> simplify the implementation of these designs
 - **Product terms** (AND terms): e.g. $\overline{X}YZ$ Literals with inverts connected through only AND operators
 - Sum terms (OR terms): e.g. $X+\overline{Y}+Z$ Literals with inverts connected through only OR operators

Minterm
 Product term; Contains all variables; Has only one Positive row in the truth table

	X	Y	\overline{XY}	$\overline{X}Y$	$X\overline{Y}$	XY
$(00)_2=0$	0	0	1	0	0	0
$(01)_2=1$	0	1	0	1	0	0
$(10)_2=2$	1	0	0	0	1	0
$(11)_2=3$	1	1	0	0	0	1

Minterm
 Product term; Contains all variables; Has only one Positive row in the truth table

	X	Y	$m_0 = \overline{X}\overline{Y}$	$m_1 = \overline{X}Y$	$m_2 = X\overline{Y}$	$m_3 = XY$
$(00)_2=0$	0	0	1	0	0	0
$(01)_2=1$	0	1	0	1	0	0
$(10)_2=2$	1	0	0	0	1	0
$(11)_2=3$	1	1	0	0	0	1

Couces

P1 Standard Forms

Minterns

X	Y	Z	$\frac{m_0}{XYZ}$	$\frac{m_1}{XYZ}$	$\frac{m_2}{\overline{X}Y\overline{Z}}$	$\frac{m_3}{\overline{X}YZ}$	$M_4 X \overline{Y} \overline{Z}$	$m_5 X \overline{Y} Z$	m_6 $XY\overline{Z}$	m_7 XYZ
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Minterms

- Minterm
 - The output is 1 when a unique combination of input (condition) is met (like a combination lock)

Minterms

- Minterms to Boolean conversions m_i
 - Write down i in binary $(\alpha_1 \alpha_2 \dots \alpha_n)_2$
 - List all the variables, connect them with AND, if $\alpha_i=0$ then invert the ith variable

Minterns

• With variables X, Y, Z, A, write down

$$m_4 = \overline{X}Y\overline{Z}\overline{A}$$

$$m_{10} = X\overline{Y}Z\overline{A}$$

Minterms

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

 Write down the Sum of Minterm of the truth table on the left

$$m_0 + m_2 + m_5$$

Minterms

• With variables X, Y, Z, write down

•
$$m_2 + m_3$$

$$m_2 + m_3 = \overline{X}Y\overline{Z} + \overline{X}YZ$$

•
$$m_1 + m_3 + m_5 + m_7$$

$$m_1 + m_3 + m_5 + m_7 = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}Z + XYZ$$

Minterns

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

 Write down the Sum of Minterm of the truth table on the left

$$m_0 + m_3 + m_6$$

Maxterm

Sum term; Contains **all variables**; Has only **one Negative row** in the truth table

 $M_i = \overline{m_i}$

	X	Y	$M_0 = X + Y$	$M_1 = X + \overline{Y}$	$M_2 = \overline{X} + Y$	$M_3 = \overline{X} + \overline{Y}$
$(00)_2=0$	0	0	0	1	1	1
(01) ₂ =1	0	1	1	0	1	1
(10) ₂ =2	1	0	1	1	0	1
(11) ₂ =3	1	1	1	1	1	0

Maxterns

- ullet Maxterms to Boolean conversion M_i
 - Write down i in binary $(\alpha_1 \alpha_2 \dots \alpha_n)_2$
 - List all the variables, connect them with OR, if $\alpha_i=1$ then invert the ith variable

Maxterms

• With variables X, Y, Z, A, write down

$$M_4 = (X + \overline{Y} + Z + A)$$

$$M_{10} = (\overline{X} + Y + \overline{Z} + A)$$

Maxterns

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

 Write down the Product of Maxterm of the truth table on the left

$$M_1 M_3 M_4 M_6$$

Maxterms

• With variables X, Y, Z, write down

•
$$M_2 \cdot M_3$$
 $(X + \overline{Y} + Z)(X + \overline{Y} + \overline{Z})$

•
$$M_1 \cdot M_3 \cdot M_5 \cdot M_7$$

 $(X + Y + \overline{Z})(X + \overline{Y} + \overline{Z})(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + \overline{Z})$

CHO/C/S

Maxterms

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

 Write down the Product of Maxterm of the truth table on the left

$$M_1M_2M_4M_7$$

e cis

• e.g.
$$M_3=X+\overline{Y}+\overline{Z}=\overline{\overline{X}YZ}=\overline{m}_3$$

Sum of Minterms

• e.g.
$$F=\overline{X}\overline{Y}\overline{Z}+\overline{X}Y\overline{Z}+X\overline{Y}Z+XYZ=m_0+m_2+m_5+m_7$$

$$=\Sigma m(0,2,5,7)$$

Product of Maxterm

• e.g.
$$F=(X+Y+Z)(X+\overline{Y}+Z)(\overline{X}+Y+\overline{Z})(\overline{X}+\overline{Y}+\overline{Z})$$

$$=M_0M_2M_5M_7 \\ =\Pi M(0,2,5,7)$$

- $F(X, Y, Z) = \sum m(1,4,5)$
 - Write down F in boolean expression $F=\overline{X}\overline{Y}Z+X\overline{Y}\overline{Z}+X\overline{Y}Z$
 - Write down \overline{F} in Product of Maxterm form

$$\overline{F} = \Pi_M(1,4,5)$$

•
$$F(X, Y, Z) = \Pi M(2,3,7)$$

ullet Write down F in boolean expression

$$F = (X + \overline{Y} + Z)(X + \overline{Y} + \overline{Z})(\overline{X} + \overline{Y} + \overline{Z})$$

• Write down \overline{F} in Sum of Minterm form

$$\overline{F} = \Sigma_m(2,3,7)$$

Sum of Products

- Sum of Minterm can come directly from the truth table
- Sum of Product: simplified version of Sum of Minterm
 - $F(X, Y, Z) = \sum m(0, 1, 2, 6)$

Product of Sums

- Product of Maxterms can also come directly from the truth table
- Product of Sums: simplified version of Product of Maxterms
 - $F(X, Y, Z) = \Pi M(0, 1, 2, 6)$

Summary

- Minterm/Maxterm
- Sum of Products
- Product of Sums

Exercises!

Difficulty: Simple

Obtain the truth table of the following function, and ex press each function in sum-of-minterms and product-of-maxterms form:

•
$$(XY+Z)(Y+XZ)$$

Difficulty: Simple

For the Boolean functions E and F, as given in the following truth table:

- List the minterms and maxterms of each function
- List the minterms of \overline{E} and \overline{F}
- List the minterms of E+F and EF

X	Y	Z	E	F
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	1	0
1	1	1	0	1

Difficulty: Simple

For the Boolean functions E and F, as given in the following truth table:

- Express E and F in sum-of-minterms algebraic form
- Simplify E and F to expressions with a minimum of literals

X	Y	Z	E	F
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	1	0
1	1	1	0	1

Sicis⁶

Difficulty: Mid

Convert the following expressions into sum-of-products and product-of-sums form

•
$$(AB + C)(B + \overline{C}D)$$

•
$$\overline{X} + X(X + \overline{Y})(Y + \overline{Z})$$