CSCI 150 Introduction to Digital and Computer System Design Lecture 2: Combinational Logical Circuits II

Jetic Gū

Overview

- Focus: Boolean Algebra
- Architecture: Combinatory Logical Circuits
- Textbook v4: Ch2 2.2, 2.3; v5: Ch2 2.2, 2.3
- Core Ideas:
 - Boolean Algebra I 1.
 - 2. In-Class Exercises

Boolean Algebra It's just math

Boolean Algebra Intro. to Boolean Algebra $L(X_1, X_2, \ldots, X_n) = Y_1, Y_2, \ldots, Y_m$

- Boolean Expression 1, the logic operation symbols, and parentheses
- Boolean Function followed by an equals sign and a **Boolean Expression**
- Single-Output / Multi-Output Boolean Function Multiple Boolean function variables as input, value 0/1 (single) or combinations of 0/1s (multi) as output

An algebraic expression formed by using binary variables, the constants 0 and

A Boolean equation consisting of a binary variable identifying the function,

Boolean Algebra Intro. to Boolean Algebra

rows will its Truth Table have?

$L(X_1, X_2, \ldots, X_n) = Y_1, Y_2, \ldots, Y_m$

• If a boolean function as n input variables and m output variables, how many

1. X + 0 =2. $X \cdot 1 =$ 3. X + 1 =4. $X \cdot 0 =$

5. X + X =

Basic Identities

6. $X \cdot X =$

7. $X + \overline{X} =$

8. $X \cdot \overline{X} =$

9. $\overline{\overline{X}} =$

- Communicative
 - 10.X + Y = Y + X
 - 11.XY = YX
- Associative

12.X + (Y + Z) = (X + Y) + Z13.X(YZ) = (XY)Z

Basic Identities

• Distributive

14.X(Y+Z) = XY + XZ

- 15.X + (YZ) = (X + Y)(X + Z)
- DeMorgan's

16.
$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

$\overline{X + Y} = \overline{X} \cdot \overline{Y}$

Truth Table

X	Y	$\overline{X+Y}$	$\overline{X} \cdot \overline{Y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

DeMorgan's

$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$

Truth Table-1

X	Y	$\overline{X \cdot Y}$	$\overline{X} + \overline{Y}$	
0	0	1	1	
0	1	1	1	
1	0	1	1	
1	1	0	0	

A. X + XY = X

B. $XY + X\overline{Y} = X$

C. $X + \overline{X}Y = X + Y$

Basic Identities

D. X(X + Y) = X

- $\mathsf{E.} \ (X+Y)(X+\overline{Y}) = X$
- $F. \quad X(\overline{X} + Y) = XY$

Basic Identities

- Dual: change AND to OR; OR to AND; 0 to 1; 1 to 0
- Duality principle: a Boolean equation remains valid if we take the dual of the expressions on both sides of the equals sign.
 - 1. X + 0 = X
 - 3. X + 1 = 1
 - 5. X + X = X

- 2. $X \cdot 1 = X$
- 4. $X \cdot 0 = 0$
- $6. \quad X \cdot X = X$

- Prove
 - $\overline{X} \cdot \overline{Y} + \overline{X} \cdot Y + X \cdot Y = \overline{X} + Y$
 - $\overline{A} \cdot B + \overline{B} \cdot \overline{C} + A \cdot B + \overline{B} \cdot C = 1$
 - $Y + \overline{X} \cdot Z + X \cdot \overline{Y} = X + Y + Z$
 - $\overline{X} \cdot \overline{Y} + \overline{Y} \cdot Z + X \cdot Z = \overline{X} \cdot \overline{Y} + X \cdot Z$
 - $\overline{X}\overline{Y} + \overline{Y}Z + XZ + XY + Y\overline{Z} = \overline{X} \cdot \overline{Y} + X \cdot Z + Y \cdot \overline{Z}$

Basic Identities

Basic Identities • $\overline{X} \cdot \overline{Y} + \overline{Y} \cdot Z + X \cdot Z = \overline{X} \cdot \overline{Y} + X \cdot Z + X \cdot \overline{Y} \cdot Z + \overline{X} \cdot \overline{Y} \cdot Z$ **Rule B** $= \overline{X} \cdot \overline{Y} + |\overline{X} \cdot \overline{Y} \cdot Z| + X \cdot Z + |X \cdot \overline{Y} \cdot Z|$ Rule A x 2

P1 Boolean Algebra

• $\overline{X} \cdot \overline{Y} + |\overline{Y} \cdot Z| + X \cdot Z = \overline{X} \cdot \overline{Y} + X \cdot Z$

• Since $\overline{Y} \cdot Z = X \cdot \overline{Y} \cdot Z + \overline{X} \cdot \overline{Y} \cdot Z$

- Boolean Algebra solving
 - **Identify** rules **applicable** to the expression
 - Apply rules that can help you simplify the expression
 - **Simplification**: reducing the number of variables and operators in an expression without changing it's truth table values
 - **Atomic element:** an element that can't have the number of its variables and operators reduced any further

Basic Identities

Algebraic Manipulation

 $F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$ = $\overline{X}Y(Z + \overline{Z}) + XZ$ Rule 14 = $\overline{X}Y \cdot 1 + XZ$ Rule 7 = $\overline{X}Y + XZ$ Rule 2

Algebraic Manipulation

 $F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$ = $\overline{X}Y(Z + \overline{Z}) + XZ$ Rule 14 = $\overline{X}Y \cdot 1 + XZ$ Rule 7 = $\overline{X}Y + XZ$ Rule 7 Rule 2

- Algebraic Manipulation can help reduce the number of gates in a circuit
 - easier to implement and debug
 - more efficient

Complementation

- Apply DeMorgan's Rule

16.
$$\overline{X_1 + X_2 + \ldots + X_n} = \overline{X_1} \cdot \overline{X_2} \cdot$$

17. $\overline{X_1 \cdot X_2 \cdot \ldots \cdot X_n} = \overline{X_1} + \overline{X_2} + \overline{X_$

• \overline{F} : complement (invert) representation for a function F, obtained from an interchange of 1s to 0s and 0s to 1s for the values of F in the truth table

Complementation

• $F_1 = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$

• $F_2 = X(\overline{Y}\overline{Z} + YZ)$

Algebra Solving 1

- Known $BC + D = 1; \overline{C} = 1$
 - Calculate: $\overline{D}(\overline{B} + \overline{C})$
 - Calculate: (D + B)(D + C)

con

Algebra Solving 2

- Known AB + C = 1; $A + \overline{D} = 0$
 - Calculate: C + AB
 - Calculate: $\overline{CA} + \overline{CB}$

Algebra Solving 3

- Known $A + B + \overline{C} = 1; \overline{AC} + \overline{AD} = 1$
 - Calculate: $(\overline{C} + B)(\overline{C} + D)$
 - Calculate: $\overline{C} + BD$

Boolean Algebra Exercises! Use HS401 to help you!

Difficulty: Simple

Prove by truth table that

• $\overline{X}Y + \overline{Y}Z + X\overline{Z} = X\overline{Y} + Y\overline{Z} + \overline{X}Z$

Difficulty: Simple

Use DeMorgen's Rules to transform the following expression to one WITHOUT AND operator

- $\overline{ABC} + CD$
- $A\overline{B}C + \overline{A} \cdot \overline{C} + AB$

Difficulty: Simple

any manipulation/transformation)

- $XYZ + \overline{X}\overline{Y} + \overline{X}\overline{Z}$
- $B(\overline{A} \cdot \overline{C} + AC) + \overline{B}(A + \overline{B}C)$

Logic Diagram

Draw the logic diagram for the following expression (you don't have to perform

Difficulty: Simple

Simplify the following expressions

•
$$\overline{X} \cdot \overline{Y} + XYZ + \overline{X}Y$$

• $X + Y(Z + \overline{X + Z})$

Difficulty: Mid

Simplify the following expressions

- $\overline{W}X(\overline{Z} + \overline{Y}Z) + X(W + \overline{W}YZ)$
- $(AB + \overline{AB})(\overline{CD} + CD) + AC$

Difficulty: Mid

Simplify the following expressions

•
$$\overline{A} \cdot \overline{C} + \overline{A}BC + \overline{B}C$$

• $\overline{A + B + C} \cdot \overline{ABC}$

Difficulty: Mid

Simplify the following expressions

- $AB\overline{C} + AC$
- $\overline{A} \cdot \overline{B}D + \overline{A} \cdot \overline{C}D + BD$

Difficulty: HARDCORE

Given that AB = 0 and A + B = 1, prove that

• $(A + C)(\overline{A} + B)(B + C) = BC$

Difficulty: HARDCORE

Prove the identity of each of the following Boolean equations

- $AB\overline{C} + B\overline{C} \cdot \overline{D} + BC + \overline{C}D = B + \overline{C}D$
- $WY + \overline{W}Y\overline{Z} + WXZ + \overline{W}X\overline{Y} = WY + \overline{W}X\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z$
- $A\overline{D} + \overline{AB} + \overline{CD} + \overline{BC} = (\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + C + D)$

