
#04-2024-1007-203 CSCI 250

Jetic Gū
1. Handwritten submissions and proprietary formats (e.g. Pages or MS Word) will not be graded.
2. Mathematical expressions must be written entirely using LaTeX, otherwise 50%-100% of marks will be

deducted.
3. Circuits must be tested. Untested circuits will receive 0.
Submission File structure:

submission.zip
 — circuit1-1.cct
 — circuit1-2.cct
 — circuit1-3.cct
 — circuit2-1.cct
 — circuit2-2.cct
 — csci250.clf

The 1-1 and 1-2 files are 1pt each, 1-3 is 3pt, 2-1 and 2-2 are 2.5pt each. If you used VHDL, you must also
submit the VHDL code files (*.dwv).

Lab 3
1. Register Array Design

1. Implement a D16, and a D3 bus port, save them in your library.

2. Use D Flip-Flop En wo/SQ/ to implement a 16bit register, your Input D and output Q must be im-

plemented using D16 buses. Show this component (device symbol) tested using HEX keyboards in

circuit1-1.cct. (1pt)

3. Implement a 16bit 2-to-1 Multiplexer using D16 buses as I/O. Show this component (device symbol)

tested using HEX keyboards in circuit1-2.cct. (1pt)

4. Use multiple 16bit 2-to-1 Multiplexers to implement a 16bit 8-to-1 Multiplexer. The switch port should

be implemented using a D3. This component can be tested together with your register array.

5. Use Decoder-8 Non Inv., and the above devices you just implemented to build a register array

with 8 x 16bit registers (3pt).

1. Inputs: D16 bus Rd_data; D3 bus Rn; D3 bus Rm; D3 bus Rd; 1bit Rw, Reset, CLK;

1. The Rw signal here is used to control the EN pin of your Decoder-8 Non Inv. so we can

prevent the register array from accepting new values when that’s desired.

2. Rd_data will carry data that will be stored in the register array, specifically one specified by

Rd (destination).

3. Rn and Rm will select registers for output buses. In ARM architecture, Rn is called the base or

first operand register, Rm is called the optional shift or second operand register.

2. Output: D16 bus Rn_data; D16 bus Rm_data.

Page of 1 3

#04-2024-1007-203 CSCI 250

3. You should implement all of the above in circuit1-3.cct.

2. ALU design.

1. You will need to design an arithmetic unit, and a logical unit separately.

2. For the Arithmetic Unit, it needs to accept as Input, 3bit of OpcodeB (not a bus), 8bits of Immediate

(Imm) (not a bus), 2bits Mode code (not a bus), D16 buses Rn_data and Rm_data. Finally it produces

D16 bus output Rd_data. You can assume all additions and subtractions are unsigned.

The Arithmetic Unit should be shown tested in circuit2-1.cct. I will allow this component to either

be implemented using VHDL or circuit diagrams.

3. For the Logical Unit, it needs to accept 4bits of OpcodeB (not a bus), D16 input buses Rn_data and

Rm_data, D16 output bus Rd_data.

OpB Mode Instruction Assembly See

000 - Logical Shift Left - Don’t care

001 - Logical Shift Right - Don’t care

010 - Arithmetic Shift Right - Don’t care

011 00 Addition ADDS <Rd>, <Rn>, <Rm> Rd_data <=
Rn_data + Rm_data

011 01 Subtraction SUBS <Rd>, <Rn>, <Rm> Rd_data <=
Rn_data - Rm_data

011 10 Addition (Immediate) ADDS <Rd>, <Rn>, #<imm3> Rd_data <=
Rn_data + Imm(2 downto 0)

011 11 Subtraction (Immedia-
te)

SUBS <Rd>, <Rn>, #<imm3> Rd_data <=
Rn_data - Imm(2 downto 0)

100 - Move MOVS <Rd>, #<imm8> Rd_data <= Imm

101 - Compare - Don’t care

110 - Add 8bits of immedia-
te

ADDS <Rdn>, #<imm8> Rd_data <=
Rn_data + Imm

111 - Unsigned Subtract
8bits of immediate

SUBS <Rdn>, #<imm8> Rd_data <=
Rn_data - Imm

OpcodeB Instruction Assembly See

0000 Bitwise AND ANDS <Rdn>, <Rm> Rd_data <=
Rn_data and Rm_data

0001 Bitwise Exclusive OR EORS <Rdn>, <Rm> Rd_data <=
Rn_data xor Rm_data

OpcodeB

Page of 2 3

#04-2024-1007-203 CSCI 250

The Logical Unit should be shown tested in circuit2-2.cct. I will allow this component to either

be implemented using VHDL or circuit diagrams.

3. Notes on LogicWorks

1. LogicWorks has poor support for std_logic_vector, as I have come to find out. Components im-

plemented using std_logic_vector as ports are very difficult to work with and buggy.

2. LogicWorks has no support for generate concurrent statements, when does work though in concur-

rent design.

3. This is the killing blow: I only realised this week that LogicWorks doesn’t support using VHDL compo-

nents as devices in the implementation of other devices. Any attempt at doing that results in the pro-

gramme malfunctioning. My recommendation: stick to circuit diagrams if you can, but due to the com-

plexity I will allow VHDL to be used for the two ALU devices (AU and LU) for grading purposes.

0010 Logical Shift Left - Don’t care

0011 Logical Shift Right - Don’t care

0100 Arithmetic Shift Right - Don’t care

0101 Add with Carry - Don’t care

0110 Subtract with Carry - Don’t care

0111 Rotate Right - Don’t care

1000 Test - Don’t care

1001 Reverse Subtract from 0 - Don’t care

1010 Compare High Registers - Don’t care

1011 Compare Negative - Don’t care

1100 Bitwise OR ORRS <Rdn>, <Rm> Rd_data <=
Rn_data or Rm_data

1101 Multiply Two Registers - Don’t care

1110 Bitwise Bit Clear - Don’t care

1111 Bitwise NOT MVNS <Rd>, <Rm> Rd_data <=
not Rn_data

Instruction Assembly SeeOpcodeB

Page of 3 3

